
Free energy-based reinforcement learning using a quantum processor

Anna Levit,1 Daniel Crawford,1 Navid Ghadermarzy,1, 2

Jaspreet S. Oberoi,1, 3 Ehsan Zahedinejad,1 and Pooya Ronagh1, 2, ˚

11QBit, 458-550 Burrard Street, Vancouver (BC), Canada V6C 2B5
2Department of Mathematics, The University of British Columbia,
121-1984 Mathematics Road, Vancouver (BC), Canada V6T 1Z2

3School of Engineering Science, Simon Fraser University,
8888 University Drive, Burnaby (BC), Canada V5A 1S6

Recent theoretical and experimental results suggest the possibility of using current and near-future
quantum hardware in challenging sampling tasks. In this paper, we introduce free energy-based
reinforcement learning (FERL) as an application of quantum hardware. We propose a method for
processing a quantum annealer’s measured qubit spin configurations in approximating the free energy
of a quantum Boltzmann machine (QBM). We then apply this method to perform reinforcement
learning on the grid-world problem using the D-Wave 2000Q quantum annealer. The experimental
results show that our technique is a promising method for harnessing the power of quantum sampling
in reinforcement learning tasks.

I. INTRODUCTION

Reinforcement learning [1, 2] has been successfully ap-
plied in fields such as engineering [3, 4], sociology [5, 6],
and economics [7, 8]. The training samples in reinforce-
ment learning are provided by the interaction of an agent
with an ambient environment. For example, in a motion
planning problem in uncharted territory, it is desirable for
the agent to learn in the fastest way possible to correctly
navigate using the fewest blind decisions. That is, neither
exploration nor exploitation can be pursued exclusively
without either facing a penalty or failing at the task. Our
goal is, therefore, to not only design an algorithm that
eventually converges to an optimal policy, but for the
algorithm to be able to generate suboptimal policies early
in the learning process.

Free energy-based reinforcement learning (FERL) using
a restricted Boltzmann machine (RBM), as suggested by
Sallans and Hinton [9], relies on approximating a utility
function for the agent, called the Q-function, using the
free energy of an RBM. RBMs have the advantage that
their free energy can be efficiently calculated using closed
formulae. RBMs can represent any joint distribution
over binary variables [10–12]; however, this property of
universality may require exponentially large RBMs [10,
12].

Crawford et al. [13] generalize this method by propos-
ing the use of a quantum or quantum-inspired algorithm
for efficiently approximating the free energy of a gen-
eral Boltzmann machine (GBM) (in general, using GBMs
involves the NP-hard problem of sampling from a Boltz-
mann distribution). Using numerical simulations, they
show that FERL using a deep Boltzmann machine (DBM)
can provide a drastic improvement in the early stages of
learning. A quantum annealer consisting of a network of

˚Corresponding author: pooya.ronagh@1qbit.com

quantum bits (qubits) can provide samples that approx-
imate a Boltzmann distribution of a system of pairwise
interacting qubits called the transverse-field Ising model
(TFIM). The free energy of the Hamiltonian of a TFIM
contains not only information about the qubits in the
measurement basis, but also about their spin in a trans-
verse direction. Using numerical simulation, [13] show
that this richer many-body system can provide the same
(in fact, slightly better) learning efficiency.

In this paper, we report the results of using the D-Wave
2000Q quantum processor to experimentally verify the
conjecture of [13]: the applicability of a quantum annealer
in reinforcement learning.

II. PRELIMINARIES

A. Markov decision problems

We refer the reader to [1] and [14] for an exposition
on Markov decision processes (MDP), controlled Markov
chains, and the various broad aspects of reinforcement
learning. A Q-function is defined by mapping a tuple
pπ, s, aq of a given a stationary policy π, a current state s,
and an immediate action a of a controlled Markov chain
to the expected value of the instantaneous and future
discounted rewards of the Markov chain that begins with
taking action a at initial state s and continuing according
to π:

Qpπ, s, aq “ Err ps, aqs ` E

«

8
ÿ

i“1

γi r pΠs
i , πpΠ

s
i qq

ff

.

Here, rps, aq is a random variable, perceived by the
agent from the environment, representing the immedi-
ate reward of taking action a from state s and Π is the
Markov chain resulting from restricting the controlled
Markov chain to the policy π. The fixed real number
γ P p0, 1q is the discount factor of the MDP. From
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Q˚ps, aq “ maxπ Qpπ, s, aq, the optimal policy for the
MDP can be retrieved via the following:

π˚psq “ argmaxaQ
˚ps, aq. (1)

This reduces the MDP to computing Q˚ps, aq. Through
a Bellman recursion [15], we get

Qpπ, s, aq “ Err ps, aqs ` γ
ÿ

s1

Pps1|s, aqmax
a1

Qpπ, s1, a1q,

(2)

so Q˚ is the fixed point of the following operator defined
on L8pS ˆAq:

T pQq : ps, aq ÞÑ Err ps, aqs ` γ
ż

max
a1

Q .

In this paper, we focus on the TD(0) Q-learning method
with the Q-function parametrized by neural networks
in order to find π˚psq and Q˚ps, aq which is based on
minimizing the distance between T pQq and Q.

B. Clamped Boltzmann machines

A clamped Boltzmann machine is a GBM in which
all visible nodes v are prescribed fixed assignments and
removed from the underlying graph. Therefore, the energy
of the clamped Boltzmann machine may be written as

Hvphq “ ´
ÿ

vPV, hPH

wvhvh´
ÿ

th,h1uĎH

whh
1

hh1 , (3)

where V and H are the sets of visible and hidden nodes,
respectively, and by a slight abuse of notation, a letter v
stands both for a graph node v P V and for the assign-
ment v P t0, 1u. The interactions between the variables
represented by their respective nodes are specified by
real-valued weighted edges of the underlying undirected
graph represented by wvh, and whh

1

denoting the weights
between visible and hidden, or hidden and hidden, nodes
of the Boltzmann machine, respectively.
A clamped quantum Boltzmann machine (QBM) has

the same underlying graph as a clamped GBM, but instead
of a binary random variable, qubits are associated to each
node of the network. The energy function is substituted
by the quantum Hamiltonian of an induced TFIM, which
is mathematically a Hermitian matrix

Hv “ ´
ÿ

vPV, hPH

wvhvσzh ´
ÿ

th,h1uĎH

whh
1

σzhσ
z
h1 ´ Γ

ÿ

hPH

σxh ,

(4)

where σzh represent the Pauli z-matrices and σxh represent
the Pauli x-matrices. Thus, a clamped QBM with Γ “ 0
is equivalent to a clamped classical Boltzmann machine.
This is because, in this case, Hv is a diagonal matrix in
the σz-basis, the spectrum of which is identical to the

range of the classical Hamiltonian (3). We note that (4)
is a particular instance of a TFIM:

H “ ´
ÿ

i,j

Ji,jσ
z
i σ

z
j ´

ÿ

i

hiσ
z
i ´ Γ

ÿ

i

σxi . (5)

The remainder of this section is formulated for the
clamped QBMs, acknowledging that it can easily be spe-
cialized for clamped classical Boltzmann machines.

C. Free energy-based reinforcement learning

Let β “ 1
kBT

be a fixed thermodynamic beta. For
an assignment of visible variables v, F pvq denotes the
equilibrium free energy, and is given via

F pvq :“ ´
1

β
lnZv “ xHvy `

1

β
trpρv ln ρvq . (6)

Here, Zv “ trpe´βHvq is the partition function of the
clamped QBM and ρv is the density matrix ρv “
1
Zv
e´βHv . The term ´ trpρv ln ρvq is the entropy of the

system. The notation x¨ ¨ ¨ y is used for the expected value
of any observable with respect to the Gibbs measure (i.e.,
the Boltzmann distribution), in particular,

xHvy “
1

Zv
trpHve

´βHvq.

Inspired by the ideas of [9] and [16], we use the negative
free energy of a QBM to approximate the Q-function
through the relationship

Qps, aq « ´F ps,aq “ ´F ps,a;wq

for each admissible state–action pair ps, aq P S ˆA. Here,
s and a are binary vectors encoding the state s and action
a on the state nodes and action nodes, respectively, of
a QBM. In reinforcement learning, the visible nodes of
a GBM are partitioned into two subsets of state nodes
S and action nodes A. Here, w represents the vector of
weights of a QBM as in (4). Each entry w of w can now
be trained using the TD(0) update rule:

∆w “ ´εprnpsn, anq ´ γF psn`1, an`1q ` F psn, anqq
BF

Bw
.

As shown in [13], from (6) we obtain

∆wvh “ εprnpsn, anq (7)
´ γF psn`1, an`1q ` F psn, anqqvxσ

z
hy and

∆whh
1

“ εprnpsn, anq (8)
´ γF psn`1, an`1q ` F psn, anqqxσ

z
hσ

z
h1y.

This concludes the development of the REFL method
using QBMs. We refer the reader to Algorithm 3 in
[13] for more details. What remains to be done is to
approximate values of the free energy F ps, aq and also the
expected values of the observables xσzhy and xσ

z
hσ

z
h1y. In

this paper, we demonstrate how quantum annealing can
be used to address this challenge.
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D. Adiabatic evolution of open quantum systems

The evolution of a quantum system under a slowly
changing time-dependent Hamiltonian is characterized
by [17]. The quantum adiabatic theorem (QAT) in [17]
states that the system remains in its instantaneous steady
state, provided there is a gap between the eigen-energy
of the steady state and the rest of the Hamiltonian’s
spectrum at every point in time. QAT motivated [18] to
introduce a paradigm of quantum computing known as
quantum adiabatic computation which is closely related
to the quantum analogue of simulated annealing, namely
quantum annealing (QA), introduced by [19].

The history of QA and QAT inspired efforts in manu-
facturing physical realizations of adiabatic evolution via
quantum hardware [20]. In reality, the manufactured
chips are operated at non-zero temperature and are not
isolated from their environment. Therefore, the existing
adiabatic theory does not cover the behaviour of these
machines. A contemporary investigation in quantum adi-
abatic theory was therefore initiated to study adiabaticity
in open quantum systems [21–25]. These references prove
adiabatic theorems for open quantum systems under vari-
ous assumptions, in particular when the quantum system
is coupled to a thermal bath satisfying the Kubo–Martin–
Schwinger condition, implying that the instantaneous
steady state is the instantaneous Gibbs state. This work
in progress shows promising opportunities to use quantum
annealers to sample from the Gibbs state of a TFIM.

In practice, due to additional complications (e.g., level
crossings and gap closure, described in the references
above), the samples gathered from the quantum annealer
are far from the Gibbs state of the final Hamiltonian. In
fact, [26] suggests that the distribution of the samples
would instead correspond to an instantaneous Hamilto-
nian at an intermediate point in time, called the freeze-out
point. Unfortunately, this point and, consequently, the
strength Γ of the transverse field at this point, is not a
priori known, and also depends on the TFIM under evo-
lution. Our goal is to simply associate a single (average)
virual Γ to all TFIMs constructed through the FERL.
Another unknown parameter is the inverse temperature
β, at which the Gibbs state, the partition function, and
the free energy are attained. In a similar fashion, we wish
to associate a single virtual β to all TFIMs encountered.
The quantum annealer used in our experiments is the

D-Wave 2000Q, which consists of a chip of superconduct-
ing qubits connected to each other according to a sparse
adjacency graph called the Chimera graph. The Chimera
graph structure looks significantly different from the fre-
quently used models in machine learning, e.g., RBMs
and DBMs, which consist of consecutive fully connected
bipartite graphs. Fig 2 shows two adjacent blocks of the
Chimera graph which consist of 16 qubits, which, in this
paper, serve as the clamped QBM used in FERL.

Another complication when using a quantum annealer
as a QBM is that the spin configurations of the qubits can
only be measured along a fixed axis (here the z-basis of the

FIG. 1: (bottom) A transverse-field Ising model consisting of 16
qubits arranged on a two-dimensional lattice with nearest neighbour
couplings. (top) The corresponding effective classical Ising model
with ten replicas arranged in a three-dimensional solid torus.

Bloch sphere). Once σz is measured, all of the quantum
information related to projection of the spin along the
transverse field (i.e., the spin σx) collapses and cannot
be retrieved. Therefore, even with a choice of virtual
Γ, virtual β, and all of the measured configurations, the
energy of (5) is still unknown. We propose a method for
overcoming this challenge based on the Suzuki–Trotter
expansion of the TFIM, which we call replica stacking,
the details of which are explained in §IIID. In §IV, we
perform a grid search over values of the virtual parameters
β and Γ. The accepted virtual parameters are the ones
that result in the most effective learning for FERL in the
early stages of training.

III. FREE ENERGY OF QUANTUM
BOLTZMANN MACHINES

A. Suzuki–Trotter representation

By the Suzuki–Trotter decomposition [27], the partition
function of the TFIM defined by the Hamiltonian (4)
can be approximated using the partition function of a
classical Hamiltonian denoted by Heff

v , which corresponds
to a classical Ising model of one dimension higher. More
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FIG. 2: (top) Two adjacent unit cells of the D-Wave 2000Q chip.
The intra-cell couplings provide a fully connected bipartite subgraph.
However, there are only four inter-cell couplings. (bottom) The
Chimera graph representing the connectivity of the two unit cells
of qubits.

precisely,

Heff
v phq “ ´

ÿ

h,h1

r
ÿ

k“1

whh
1

r
hkh

1
k ´

ÿ

v,h

r
ÿ

k“1

wvhv

r
hk (9)

´ w`

˜

ÿ

h

r
ÿ

k“1

hkhk`1 `
ÿ

h

h1hr

¸

,

where r is the number of replicas, w` “ 1
2β log coth

´

Γβ
r

¯

,
and hk represent spins of the classical system of one
dimension higher. Note that each hidden node’s Pauli
z-matrices σzh are represented by r classical spins, denoted
by hk, with a slight abuse of notation. In other words,
the original Ising model with non-zero transverse field
represented through non-commuting operators can be
mapped to a classical Ising model of one higher dimension.
Fig. 1 shows the underlying graph of a TFIM on a
two-dimensional lattice and a corresponding ten-replica
effective Hamiltonian in three dimensions.

B. Approximation of free energy using Gibbs
sampling

To approximate the right-hand side of each of (7) and
(8), we sample from the Boltzmann distribution of the
effective Hamiltonian using [27, Theorem 6]. We find

the expected values of the observables xσzhy and xσ
z
hσ

z
h1y

by averaging the corresponding classical spin values. To
approximate the Q-function, we use [27, Theorem 4] to
substitute (6) by

F pvq “ xHeff
v y `

1

β

ÿ

c

Ppc|vq logPpc|vq , (10)

where Heff
v is the effective Hamiltonian and c ranges over

all spin configurations of the classical Ising model of one
dimension higher, defined by Heff

v .
The above argument also holds in the absence of the

transverse field, that is, for the classical Boltzmann ma-
chine. In this case, the TD(0) update rule is given by

∆wvh “ εprnpsn, anq (11)
` γQpsn`1, an`1q ´Qpsn, anqqvxhy and

∆whh
1

“ εprnpsn, anq (12)
` γQpsn`1, an`1q ´Qpsn, anqqxhh

1y ,

where xhy and xhh1y are the expected values of the vari-
ables and the products of the variables, respectively, in
the binary encoding of the hidden nodes with respect to
the Boltzmann distribution of the classical Hamiltonian
(3). The values of the Q-functions in (11) and (12) can
also be approximated empirically, since, in a classical
Boltzmann machine,

F pvq “
ÿ

h

Pph|vqEvphq `
1

β

ÿ

h

Pph|vq logPph|vq (13)

“ ´
ÿ

sPS
hPH

wshsxhy ´
ÿ

aPA
hPH

wahaxhy ´
ÿ

th,h1uĎH

uhh
1

xhh1y

`
1

β

ÿ

h

Pph|s,aq logPph|s,aq.

C. Simulated quantum annealing

One way to sample spin values from the Boltzmann
distribution of the effective Hamiltonian is to use the
simulated quantum annealing algorithm (SQA) (see [28,
p. 422] for an introduction). SQA is one of the many
flavours of quantum Monte Carlo methods, and is based
on the Suzuki–Trotter expansion described above. This
algorithm simulates the quantum annealing phenomena of
a TFIM by slowly reducing the strength of the transverse
field at finite temperature to the desired target value. In
our implementation, we have used a single spin-flip variant
of SQA with linear transverse-field schedule as in [29] and
[30]. Experimental studies have shown similarities in the
behaviour of SQA and that of quantum annealing [31, 32]
and its physical realization [33, 34] by D-Wave Systems.

The classical counterpart of SQA is conventional simu-
lated annealing (SA), which is based on thermal annealing.
This algorithm can be used to sample from Boltzmann
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distributions that correspond to an Ising spin model in
the absence of a transverse field (i.e., Γ “ 0 in (5)).
Unlike with SA, it is possible to use SQA not only to
approximate the Boltzmann distribution of a classical
Boltzmann machine, but also that of a quantum Hamil-
tonian in the presence of a transverse field. This can be
done by reducing the strength of transverse field to the
desired value defined by the model, rather than to zero.
It has been proven by [35] that the spin system defined
by SQA converges to the Boltzmann distribution of the
effective classical Hamiltonian of one dimension higher
that corresponds to the quantum Hamiltonian. Therefore,
it is straightforward to use SQA to approximate the free
energy in (10) as well as the observables xσzhy and xσ

z
hσ

z
h1y.

D. Replica stacking

As explained in §IID, a quantum annealer provides
measurements of σz spins for each qubit in the TFIM.
The observables xσzhy and xσ

z
hσ

z
h1y can therefore be ap-

proximated by averaging over the spin configurations
measured by the quantum annealer. Moreover, by [27,
Theorem 6] and translation invariance, each replica of the
effective classical model is an approximation of the spin
measurements of the TFIM in the measurement bases σz.
Therefore, a quantum annealer that operates at a given
virtual inverse temperature β and anneals up to a virtual
transverse-field strength Γ, a σz-configuration sampled by
the annealer may be viewed as an instance of a classical
spin configuration from a replica of the classical effective
Hamiltonian of one dimension higher.

This suggests the following method to approximate the
free energy from (10) for a TFIM. We gather a pool of
configurations sampled by the quantum annealer for the
TFIM considered, allowing repetitions. In r iterations, a
spin configuration is sampled from this pool and inserted
as the next replica of the effective classical Hamiltonian
consisting of r replicas. This procedure creates a pool of
effective classical spin configurations c, which are then
employed in equation (10) in order to approximate the
free energy of the TFIM empirically.

IV. THE EXPERIMENTS

We benchmark our various FERL methods on the 3ˆ 5
grid-world problem [36] with an agent capable of taking
the actions, up, down, left, right, or stand still, on a
grid-world with one deterministic reward, one wall, and
one penalty, as shown in Fig. IV (top). The task is to
find an optimal policy, as shown in Fig. IV (bottom), for
the agent at each state in the grid-world.
The discount factor, as explained in §IIA, is set to

0.8. The reward R “ 200 is attained by the agent in the
top-left corner, the neutral value of moving to any empty
cell is 100, and the agent is penalized by not receiving any
reward if it moves to the penalty cell, with value P “ 0.

R

W

P

ö

W

Ò

Ð

Ð

Ò

Ð

ÐÒ

ÐÒ

Ð Ð

Ò

Ò

ÐÒ

ÐÒ

FIG. 3: (top) A 3 ˆ 5 grid-world problem instance with one reward,
one wall, and one penalty. (bottom) An optimal policy for this
problem instance is a selection of directional arrows indicating
movement directions.

For Tr independent runs of every FERL method, Ts
training samples are used. The fidelity measure at the
i-th training sample is defined by

fidelitypiq “ pTr ˆ |S|q´1
Tr
ÿ

l“1

ÿ

sPS

1Aps,i,lqPπ˚psq, (14)

where π˚ denotes the best known policy and Aps, i, lq de-
notes the action assigned at the l-th run and i-th training
sample to the state s. In our experiments, each algorithm
is run 100 times.
Fig. 4 demonstrates the performance of a deep Q-

network (DQN) network [37] consisting of an input layer
of 14 state nodes, two layers of eight hidden nodes each,
and an output layer of five nodes representing the values
of the Q-function for different actions, given a configura-
tion of state nodes. We use the same number of hidden
nodes in the DQN as in the other networks described in
this paper.

0 10000 20000 30000 40000
Training Sample

0.0

0.2

0.4

0.6

0.8

1.0

fid
el

ity

FIG. 4: The learning curve of a deep Q-network (DQN) with two
hidden layers, each with eight hidden nodes, for the grid-world
problem instance as shown in Fig. IV.
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1 2 3 4 5
β

5

2

1

0.5

0.2

0

Γ

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

FIG. 5: Heatmap of average fidelity obtained by various choices of
virtual parameters β and Γ. The Γ “ 0 row tests the performance
of FERL with samples obtained from the quantum annealer treated
as classical configurations of a GBM. In all other rows, samples are
interpreted as σz-measurements of a QBM.

A. Grid search for virtual parameters on the
D-Wave 2000Q

We treat the network on superconducting qubits rep-
resented in Fig. 2 as a clamped QBM with two hidden
layers, represented using blue and red colours. The state
nodes are considered fully connected to the blue qubits
and action nodes are fully connected to the red qubits.

For a choice of virtual parameters Γ ‰ 0 and β, which
appear in (9) and (10), and for each query to the D-
Wave 2000Q chip, we construct 150 effective classical
configurations of one dimension higher, out of a pool
of 3750 reads, according to the replica stacking method
introduced in §IIID. The 150 configurations are, in turn,
employed to approximate the free energy of the quantum
Hamiltonian. We conduct ten independent runs of FERL
in this fashion and find the average fidelity over the ten
runs and over the Ts “ 300 training samples.
Fig. 5 demonstrates a heatmap of average fidelity of

each choice of virtual parameters β and Γ. In the Γ “ 0
row each D-Wave query is considered as sampling from a
classical GBM with Fig. 2 as underlying graph.

B. FERL for the grid-world problem

Fig. 6 shows the growth of the average fidelity of the
best known policies generated by different FERL methods.
For each method, the fidelity curve is an average over 100
independent runs, each for Ts “ 500 training samples.
In this figure, the “D-Wave Γ “ 0.5, β “ 2.0” curve

corresponds to the D-Wave 2000Q replica stacking based

0 100 200 300 400 500
Training Sample

0.0

0.2

0.4

0.6

0.8

1.0

fid
el

ity

D-Wave Γ = 0.5,β = 2.0
D-Wave Classical β = 2.0
SA Chimera β = 2.0
SA Bipartite β = 2.0

SQA Chimera Γ = 0.5,β = 2.0
SQA Bipartite Γ = 0.5,β = 2.0
RBM

FIG. 6: Comparison of different FERL methods for the grid-world
problem instance in Fig. IV.

method with the choice of best virtual parameters Γ “ 0.5
and β “ 2.0, as shown in the heatmap in Fig. 5. The
training is based on formulae (7), (8), and (10). The “SQA
Bipartite Γ “ 0.5, β “ 2.0” and “SQA Chimera Γ “ 0.5,
β “ 2.0” curves are based on the same formulae with un-
derlying graphs being a bipartite (DBM) and a Chimera
graph, respectively, with the same choice of virtual pa-
rameters, but the effective Hamiltonian configurations
generated using SQA as explained in §III C.

The “SA Bipartite β “ 2.0” and “SA Chimera β “ 2.0”
curves are generated by using SA to train a classical DBM
and a classical GBM on the Chimera graph, respectively,
using formulae (11), (12), and (13). SA is run with a linear
inverse temperature schedule, where β “ 2.0 indicates
the final value. The “D-Wave Classical β “ 2.0” curve
is generated using the same method, but with samples
obtained using the D-Wave 2000Q. The “RBM” curve is
generated using the method by [9].

V. DISCUSSION

We solve the grid-world problem using various Q-
learning methods with the Q-function parametrized by
neural networks. For comparison, we demonstrate the
performance of a DQN method that can be considered
state of the art. This method efficiently processes every
training sample, but as shown in Fig. 4, requires very large
number of training samples to converge to the optimal
policy. Another conventional method is free energy-based
reinforcement learning using an RBM. This method is also
very successful at the scale of the reinforcement learning
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task considered in our experiment. Although this method
is not outperforming other FERL methods taking advan-
tage of a highly efficient sampling oracle, the processing
of each training sample is efficient as it is based on closed
formulae. In fact, for the size of problem considered, the
RBM-based FERL outperforms the DQN method.

The comparison of results in Fig. 6 suggests that replica
stacking is a successful method for estimating effective
classical configurations obtained from a quantum annealer,
given that the spins can only be measured in measure-
ment bases. For practical use in reinforcement learning,
this method provides a means of treating the quantum
annealer as a QBM. FERL using the quantum annealer,
in conjunction with the replica stacking technique, pro-
vides significant improvement over FERL using classical
Boltzmann machines. The curve representing SQA-based
FERL using a Boltzmann machine on Chimera graph
is almost coincident with the one obtained using the
D-Wave 2000Q, whereas the SQA-based FERL using a
DBM slightly outperforms it. This suggests that devel-
oping quantum annealing chips with greater connectivity
and more control over annealing time can further improve
the performance of the replica stacking method applied
to reinforcement learning tasks. This is further supported
by comparing the performance of SA-based FERL using
a DBM versus SA-based FERL using the Chimera graph.
This result shows that DBM is a better choice of neu-
ral network compared to the Chimera graph due to its
additional connections.
For practical reasons, we aim to associate an identi-

cal choice of virtual parameters β and Γ to all of the
TFIMs constructed using FERL. Benedetti et al. [38]

and Raymond et al. [39] provide methods for estimating
the effective inverse temperature β for other applications.
However, in both studies, the samples obtained from the
quantum annealer are matched to the Boltzmann distribu-
tion of a classical Ising model. In fact, the transverse-field
strength is a second virtual parameter that we consider.
The optimal choice Γ “ 0.5 corresponds to 2{3 of the
annealing time, in agreement with the work of [26], who
also consider TFIM with 16 qubits.

The agreement of FERL using quantum annealer reads
treated as classical Boltzmann samples, with that of FERL
using SA and classical Boltzmann machines, suggests that,
at least for this task, and this size of Boltzmann machine,
the measurements provided by the D-Wave 2000Q can be
considered good approximations of Boltzmann distribu-
tion samples of classical Ising models.

VI. CONCLUSION

In this paper, we perform free energy-based reinforce-
ment learning using existing quantum hardware, namely
the D-Wave 2000Q. Our methods rely on Suzuki–Trotter
decomposition and realization of the measured configu-
rations by the quantum device as replicas of an effective
classical Ising model of one dimension higher. Future
research can employ these principles to solve larger-scale
reinforcement learning tasks in the emerging field of quan-
tum machine learning.
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