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Quantum computing is a new computing paradigm that holds great promise for the efficient simulation
of quantum mechanical systems. However, the hardware envelope provided by noisy, intermediate-scale
quantum (NISQ) devices is still small compared to the size of molecules that are relevant to industry. In the
present paper, the method of increments (MI) is introduced to help expedite the application of NISQ devices
for quantum chemistry simulations. The MI approach expresses the electron correlation energy of a molecular
system as a truncated many-body expansion in terms of orbitals, atoms, molecules, or fragments. Here, the
electron correlation of the system is expanded in terms of occupied orbitals, and the MI approach is employed
to systematically reduce the occupied orbital space. At the same time, the virtual orbital space is reduced
based on the frozen natural orbitals (FNO), which are obtained using a one-particle density matrix from
second-order, many-body perturbation theory. In this way, a method referred to as the MI-FNO approach
is constructed for the systematic reduction of both the occupied space and the virtual space in quantum
chemistry simulations. The subproblems resulting from the MI-FNO reduction can then be solved by any
algorithm, including quantum algorithms such as the phase estimation algorithm and the variational quantum
eigensolver, to predict the correlation energies of a molecular system. The accuracy and feasibility of the MI-
FNO approach are investigated for the case of small molecules—i.e., BeH2, CH4, NH3, H2O, and HF—within
a cc-pVDZ basis set. Then, the efficacy of the proposed framework is investigated for larger molecules
used in realistic industrial applications using a qubit-count estimation on an industrially relevant, medium-
sized catalyst molecule, the “constrained geometry” olefin polymerization catalyst. We show that, even by
employing a modest truncation of the virtual space, the MI-FNO approach reduces the qubit requirement by
almost a factor of one half. In doing so, our approach can facilitate hardware experiments based on smaller,
yet more realistic, chemistry problems, assisting in the characterization of NISQ devices. Moreover, reducing
the qubit requirement can help scale up the size of molecular systems that can be simulated in quantum
chemistry applications, which can greatly enhance computational chemistry studies for large-scale industrial
applications.

I. INTRODUCTION

The computational prediction of chemical processes requires an accurate description of the quantum nature of the
molecules involved. However, the simulation of quantum mechanical systems on classical computers is a computation-
ally demanding task, as the dimension of the Hilbert space of quantum systems increases exponentially with system
size. Thus, on classical hardware, exact solutions of the molecular, electronic Schrödinger equation are only possible
for small systems1.

There has been increasing interest in quantum computation, a new computing paradigm initially conjectured as
an efficient framework for simulating quantum mechanical systems2,3. In the decades since this conjecture was put
forward, there has been tremendous theoretical progress towards proving the concept of using a quantum computer for
quantum simulations4, and early demonstrations of quantum algorithms were implemented5 and tested for the study
of molecular energies on a quantum computer6–10. There has also been accelerated progress in hardware development.
For example, IBM11, Google12, Intel13, Rigetti14, and QCI15 have all developed quantum computing platforms based
on superconducting qubits, while IonQ16 and Honeywell17 have developed platforms based on ion traps. Googles
achievement on a benchmarking milestone commonly referred to as “quantum supremacy”18 is a demonstration of the
transitioning of quantum computers away from being merely a theoretical concept. Despite this accelerated progress,
existing quantum hardware remains error-prone and limited in computing capacity, hence the introduction of the
term noisy, intermediate-scale quantum (NISQ) device19. Error correction and fault tolerance are the keys to scalable
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quantum computers. However, current devices are both too noisy and too limited in the number of qubits to be able
to perform error correction. In parallel, while the resources required for simulating quantum systems on quantum
hardware can scale better than on classical computers, they still require qubit counts, gate fidelities, and a level of
coherence beyond the limitations of currently available NISQ devices.

Great effort has been made towards overcoming the limitations of NISQ devices, and to accelerate the application of
quantum computing to quantum chemistry by introducing quantum–classical hybrid algorithms20–23, low-depth circuit
ansatzes for quantum simulation24–31, and problem decomposition techniques (PD) from quantum chemistry32–37.
Reducing the problem size of a molecular system is essential for the NISQ era. Such a reduction can provide us with
more opportunities to characterize near-term devices, allowing us to conduct hardware experiments based on larger
systems rather than the toy problems that are currently accessible.

The PD techniques of quantum chemistry are approximations used to study a molecule or a material by decomposing
the electronic structure calculation problem of a given system into subproblems for more-efficient calculations, without
a great sacrifice in accuracy. These approaches have a very long history, beginning with the early work of Sinanoğlu38,
Nesbet39, and Ahlrichs and Kutzelnigg40 on local correlation in the 1960s. Reviews on some PD techniques in quantum
chemistry and references are readily available41–44. Of particular note are the recent development of local pair natural
orbital based coupled-cluster (CC) approaches45–51 that allow calculations to be performed on much larger systems
than their parent canonical CC approaches.

The application of PD techniques in quantum chemistry simulations on quantum computers has been proposed in
several studies. Such work includes the active space approach, including only the important occupied and virtual
orbitals into the computational space33,35; the reduction of the virtual orbital space by removing higher eigenvalue
canonical virtual orbitals52; and the systematic reduction of the virtual space based on the frozen natural orbital
(FNO) method52,53. These approaches are useful for reducing problem size; however, to our knowledge, no approach
has been proposed for the systematic reduction of both the occupied space and the virtual space. The systematic
truncation of the occupied space also becomes essential, in particular, when larger molecular systems that have a
considerable number of electrons are targeted.

An incremental full configuration interaction (iFCI) approach based on the method of increments has been recently
proposed54–56, which provides a polynomial scaling approximation to full configuration interaction (FCI). By decom-
posing the problem into n-body subproblems (or “increments”), it has been shown that accurate correlation energies
can be recovered at low values of n in a highly parallelizable computation54–56.

In the present study, we use the method of increments (MI) to reduce the occupied space of a molecular system,
and the FNO method57–61 to truncate virtual space. In this way, a novel framework, which we call the MI-FNO
approach, is constructed for the systematic reduction of both the occupied and the virtual spaces in the context
of quantum chemistry simulations on near-term quantum devices. As a first step, we validate the accuracy of the
MI-FNO approach, and demonstrate its ability to reduce both the occupied and virtual spaces while maintaining a
reasonable level of accuracy, by examining the small molecules BeH2, CH4, NH3, H2O, and HF using a moderate-sized
cc-pVDZ basis set62. Then, as an early demonstration of the efficacy of our MI-FNO approach on larger molecules, we
give a qubit count estimation for an industrially relevant, medium-sized catalyst molecule (the “constrained geometry”
olefin polymerization catalyst) using the cc-pVDZ and cc-pVTZ basis sets62.

This paper is organized as follows. In Sec. II, a review of the MI, FNO, and the variational quantum eigensolver
(VQE) is provided as an example of the quantum solvers suitable for near-term quantum devices. In Sec. III, the
computational details are described and a schematic illustration is provided of our MI-FNO approach for large-scale
quantum chemistry simulations on quantum hardware. In Sec. IV, we present the resulting molecular energies obtained
with the MI-FNO approach and discuss its applicability for use on near-term devices. Sec. V concludes the paper,
providing a summary of results and possibilities for future work.

Similar to our previous work36, the present study is an attempt to build an efficient framework for performing
scalable quantum chemistry simulations on near-term devices based on PD techniques.

II. THEORY

Figure 1 shows a conceptual illustration of the MI-FNO framework. In this section, we provide a brief overview of
each ingredient comprising the framework, namely, the method of increments (MI) to distribute the occupied orbitals
among subproblems (or “increments” in the context of MI) and the use of FNOs to restrict the number of virtual
orbitals within each subproblem. The VQE is presented as an example of the possible quantum solvers for near-
term quantum devices. The framework is compatible with other quantum algorithms and, more generally, with both
quantum and classical back ends for solving the subproblems.
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FIG. 1. Conceptual and schematic illustration of the MI-FNO framework for scaling up the size of molecules for quantum
chemistry simulations on quantum hardware

A. Method of increments

The MI approach, first introduced in quantum chemistry by Nesbet63–65, is based upon the n-body Bethe–Goldstone
expansion66 of the correlation energy of a molecule. The correlation energy (Ec), defined as the difference between
the exact (Eexact) and the Hartree–Fock (mean-field) energy (EHF), can be expanded as

Ec = Eexact − EHF

=
∑
i

εi +
∑
i>j

εij +
∑
i>j>k

εijk +
∑

i>j>k>l

εijkl . . . , (1)

where εi, εij , εijk, and εijkl are, respectively, the one-, two-, three-, and four-body increments (expansions) defined as

εi = Ec(i) (2)

εij = Ec(ij)− εi − εj (3)

εijk = Ec(ijk)− εij − εik − εjk − εi − εj − εk (4)

εijkl = Ec(ijkl)− εijk − εijl − εjkl − · · · (5)

...

where Ec(i) denotes the correlation energy of the increment i.
Depending on the type of increments we use, the indices (i, j, k, . . .) appearing in the expansion of Eq. 1 can

be orbitals, atoms, molecules, or fragments54,67–84. In addition, depending on the nature of the correlation problem
or the available computational resources, any suitable algorithm can be chosen to predict the correlation energies,
whether geared towards classical or quantum computing architectures. Some classical algorithms studied within the
framework of the method of increments include the CC71,76,79 and FCI approaches54–56. As for quantum algorithms,
the phase estimation algorithm (PEA)85,86 or the VQE20 can be used.

B. Frozen natural orbitals

The method of increments is a technique that provides an efficient and accurate approach for computing electronic
correlation energies. However, further reduction of the problem size will be required when we target applications on
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near-term quantum computers. In the present study, we incorporate the FNO approach57–61 into our framework to
further reduce the problem size by truncating the virtual orbital space. In recent work, this approach has been applied
to reduce the computational cost of quantum chemistry calculations in quantum computing53.

FNOs are considered transformed and ranked virtual molecular orbitals. They are called “frozen” natural orbitals87

as only the virtual–virtual block of the one-particle reduced density matrix is diagonalized. They can be obtained
at any arbitrary level of an ab initio theory. In this work, we use the MBPT(1) wavefunction, which constitutes
the first-order correction to the Hartree–Fock wavefunction. The one-particle virtual–virtual block of the MBPT(2)
density matrix is diagonalized to obtain natural orbitals as eigenvectors and corresponding occupation numbers as
eigenvalues. These eigenvalues can be used to truncate the virtual space, while the eigenvectors are employed to
transform the virtual space. By choosing a certain threshold or population percentage criterion, a certain number of
virtual orbitals can be kept, and the rest discarded.

The correlation energy is calculated only in the truncated virtual space, and then, the correction term ∆EMBPT(2) =
EMO

MBPT(2) − E
FNO
MBPT(2) is added to the correlation energy to recover the full correlation energy. The correction term

∆EMBPT(2) is the MBPT(2) correlation energy in the full molecular orbital space minus the MBPT(2) correlation
energy in the truncated FNO space.

In the spin-orbital basis, the virtual–virtual (Dab) block of the one-particle MBPT(2) density matrix is expressed
as59

D
(2)
ab =

1

2

∑
cij

〈cb||ij〉〈ij||ca〉
εcbij ε

ca
ij

, (6)

where the quantity εabij in the denominator is defined as εabij = fii + fjj − faa − fbb, in which f is the Fock matrix.
Note that 〈cb||ij〉 = 〈cb|ij〉 − 〈cb|ji〉 is an antisymmetric two-electron integral.

C. The Variational Quantum Eigensolver and the Unitary Coupled-Cluster (UCC) ansatz

We consider the VQE algorithm20 as an example of the quantum solvers suitable for near-term applications on
NISQ devices. The VQE algorithm was originally introduced, within the context of quantum chemistry, as a hybrid
quantum–classical algorithm for solving the molecular electronic Schrödinger equation. According to the variational

principle, for a (normalized) parametrization of the wavefunction |Ψ(~θ)〉, if one minimizes the expectation value of

the Hamiltonian operator Ĥ

E = 〈Ĥ〉 = min
~θ
〈Ψ(~θ)|Ĥ|Ψ(~θ)〉 ≥ Eexact , (7)

an upper bound to the exact ground state energy is obtained.

We wish to estimate values of the parameters {θ1, θ2, . . . , θp} (i.e., the elements of the vector ~θ) that minimize
the expectation value according to Eq. 7. The VQE algorithm requires a Hamiltonian operator in qubit form (i.e.,
written in terms of Pauli operators). Furthermore, a unitary parametric ansatz for the wavefunction, in the qubit
basis, is required for the state preparation. Once the initial state has been prepared (i.e., an appropriate set of
initial parameters has been used), an expectation value measurement is performed using quantum hardware or an
appropriate simulation tool. Subsequently, the current value of the expectation value is fed to a classical optimizer
in order to estimate a new set of variational parameters. This provides a new wavefunction, and the procedure is
repeated until an optimized wavefunction and expectation value have been obtained.

The VQE algorithm constitutes a reduced circuit-depth hybrid quantum–classical methodology for solving the
molecular electronic Schrödinger equation, as it minimizes the use of quantum hardware resources. In the second-
quantization picture, the molecular electronic Hamiltonian takes the form

Ĥ =
∑
p,q

hpq â
†
paq +

1

2

∑
p,q,r,s

hpqrs â
†
pâ
†
qâsâr , (8)

in which p, q, r, and s label general spin-orbitals, a†p and ap are, respectively, creation and annihilation operators
associated with orbital p. The one- and two-electron integrals, hpq and hpqrs , are

hpq = 〈p| ĥ |q〉 =

∫
ϕ∗p(x)

(
−1

2
∇2 −

N∑
µ=1

Zµ
|r−Rµ|

)
ϕq(x) dx (9)
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and

hpqrs = 〈pq|rs〉 =

∫
ϕ∗p(x1)ϕ∗q(x2)

1

r12
ϕr(x1)ϕs(x2) dx1dx2 , (10)

respectively, in which Zµ and Rµ are the charge and position of nucleus µ, respectively, and r12 = |r2−r1| is the inter-
electronic separation. The molecular Hamiltonian can be transformed into the qubit basis by using the Jordan–Wigner
transformation88 or another available transformation technique (e.g., Bravyi–Kitaev89, Bravyi–Kitaev Superfast90):

Ĥ =
∑
p

hαpσ
α
p +

∑
pq

hpqσ
α
p σ

β
q +

∑
pqr

hpqrσ
α
p σ

β
q σ

γ
r + . . . . (11)

Here, p, q, r, . . . label qubits, and σαp , where α ∈ x, y, z, is a Pauli matrix acting on qubit p.

While there are several strategies for deriving a parametric ansatz for the wavefunction (e.g., hardware efficient9,
QCC30, and iQCC31), we consider the UCC ansatz in this work. The choice of ansatz is important for the convergence
of the classical optimization and has a marked effect on the circuit depth. The latter issue is beyond the scope of the
present study, but we plan to return to it in future work. Let us assume that the Hartree–Fock equations have been
solved to obtain a zeroth-order, single-determinantal, mean-field wavefunction |Ψ0〉 and the one- and two-electron
integrals in the spin-orbital basis. As per convention, we use i, j, k, . . . to label occupied spin-orbitals in the reference
wavefunction, while a, b, c, . . . are used to label unoccupied (virtual) orbitals. The UCC ansatz for the correlated
wavefunction can then be written as

Ψ(~θ) = eT̂−T̂
†
|Ψ0〉 , (12)

in which the cluster operator is defined as

T̂ = T̂1 + T̂2 + . . . (13)

=
∑
i,a

θai â
†
aâi +

1

2

∑
i,j,a,b

θabij â
†
aâ
†
bâj âi + . . . (14)

The UCC ansatz is usually truncated up to double excitations (i.e., including only T̂1 and T̂2 in Eq. 14), thus defining
the UCC approach with single and double excitations (UCCSD). In analogy with the Hamiltonian in Eq. 11, the
ansatz of Eq. 12 can be transformed into the qubit basis. Due to the non-commuting nature of the operators used in
the UCCSD ansatz, the Suzuki–Trotter decomposition is used to decompose the exponential of the cluster operator
as a product of unitary operators acting on the reference wavefunction (obtained from a classical Hartree–Fock
calculation), and is subsequently transformed into a qubit representation. This Trotterized UCCSD ansatz is then
used for the state preparation step of the VQE algorithm discussed above to find an approximate expectation value
of the molecular electronic Hamiltonian, thus providing an estimate of the ground-state energy of a given molecule.

III. COMPUTATIONAL DETAILS

We carried out UCCSD and CCSD calculations using the incremental expansion approach and FNO-based virtual
space truncation. The calculations were performed on the experimental molecular geometries of BeH2, CH4, NH3,
H2O, and HF obtained from the NIST Computational Chemistry Comparison and Benchmark Database91. The
cc-pVDZ basis set62 was used for all of the calculations performed using these molecules.

In the incremental expansion approach, we considered the many-body expansion series including up to two-body
terms for BeH2, as the expansion including up to three-body terms becomes equivalent to solving the full problem
(i.e., BeH2 has three occupied orbitals). The expansion up to two-body terms for BeH2 includes three one-body
increments and three two-body increments—in total, six increments. For the rest of the molecules, CH4, NH3, H2O,
and HF, that have five occupied orbitals, we examined the expansions up to three and four bodies. The resulting total
numbers of increments were 25 and 30, respectively, for the expansions up to three-body and four-body increments.
For the virtual orbitals of each increment, we examined the effect of the size of the virtual space by adding one virtual
orbital, which has a higher FNO occupancy, at a time, to the computational space of the increments.

For BeH2, the electronic structure problems of the increments with a truncated virtual space up to seven virtual
orbitals were solved by using VQE with the UCCSD ansatz, leading to, at most, an 18-qubit problem. As shown in
following section, we found that the convergence behaviour of the solvers, UCCSD and CCSD, as a function of the
number of virtual orbitals, closely resembled each other. Therefore, when the virtual space consisted of more than
seven orbitals, the increments were solved using the conventional CCSD method. Furthermore, for the same reason,
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only conventional CCSD calculations were performed for the molecules CH4, NH3, H2O, and HF. The MBPT(2)
FNO correction was added to the correlation energies obtained using a truncated virtual space, in order to account
for the missing correlation energies. The resulting correlation energies for each increment were used to reconstruct
the correlation energy of the entire molecule by following the expansion scheme described in the previous section.
We refer to the present approach as MI(n)-FNO-UCCSD (or MI(n)-FNO-CCSD if the classical CCSD approach is
used to obtain the correlation energy), where n indicates the expansion up to n-body increments. To obtain a qubit
count estimation on an molecule relevant to industry, we considered a “constrained-geometry” metallocene olefin
polymerization catalyst92. We used the experimental molecular geometry92 and the cc-pVDZ and the cc-pVTZ basis
sets62.

The MI(n)-FNO-UCCSD and MI(n)-FNO-CCSD methods are part of QEMIST, the Quantum-Enabled Molecular
ab Initio Simulation Toolkit93, and the results of all the calculations described in the following section were performed
using this software package. The molecular integrals were generated using PySCF94. The qubit representation of
the molecular Hamiltonian was obtained using the Jordan–Wigner transformation88 implemented in OpenFermion95.
The VQE simulations using the UCCSD ansatz were performed using ProjectQ96 and OpenFermion-ProjectQ95. The
classical optimization steps of VQE were performed using the COBYLA algorithm97 with a convergence tolerance of
10−5. The MBPT(1) amplitudes were used as an initial guess of the parameters for the UCCSD trial wavefunction.
The conventional CCSD energy of the full problem was also calculated by PySCF and used as a reference energy. In
performing the conventional CCSD calculation, we used the tolerance of 10−7 hartrees.

IV. RESULTS AND DISCUSSION

A. Validation of the MI(n)-FNO approach

TABLE I. Total energy values (hartrees) and the difference from the conventional CCSD values using the MI(n)-CCSD approach.
The differences are shown in parentheses. The calculated results for the many-body expansion truncated up to n = 2-, 3-, and
4-body increments are listed.

CCSD MI(2)-CCSD MI(3)-CCSD MI(4)-CCSD

BeH2 -15.835746 -15.835806 (-0.000060) -15.835746 (0.000000)

CH4 -40.385951 -40.392778 (-0.006827) -40.385350 (0.000601) -40.385952 (-0.000001)

NH3 -56.400579 -56.412272 (-0.011693) -56.399440 (0.001140) -56.400581 (-0.000002)

H2O -76.240099 -76.254995 (-0.014896) -76.238622 (0.001478) -76.240102 (-0.000003)

HF -100.228154 -100.242731 (-0.014577) -100.226824 (0.001331) -100.228157 (-0.000003)

To validate the MI(n)-FNO approach, we first examined the accuracy of the energy calculations using the method
of increments, with no virtual space truncation. The total energies of BeH2, CH4, NH3, H2O, and HF were calculated
using the MI(2)-CCSD, MI(3)-CCSD, and MI(4)-CCSD methods, then comparing them with the conventional CCSD
values. The total energies using the MI methods and the comparison of the energies with the CCSD energies are
listed in Table I. We achieved chemical accuracy (0.0015 hartrees or 1.0 kcal/mol) with respect to the conventional
CCSD value for the six-electron system BeH2 using the MI(2) approach. The MI(3) value agrees with the parent
CCSD value, because they are equivalent for this six-electron system. Hence, we found that MI(2) is sufficiently
accurate for performing calculations on BeH2. For the other four systems, each of which contain 10 electrons, we
observed a relatively large error using the MI(2) expansion. The CH4 molecule exhibited the smallest error, -0.006827
hartrees (4.28 kcal/mol), which is over four times larger than the target value of 1.0 kcal/mol for chemical accuracy.
In contrast, with the MI(3) approach, we achieved chemical accuracy in the total energies for all molecules considered.
The largest error was observed for the total energy of H2O, which was 0.001478 hartrees (0.93 kcal/mol) larger than
the CCSD value. The error became less than 5.0 ×10−6 hartrees when using MI(4) for these 10-electron systems.
The accuracy of the MI(2) expansion was not sufficient for achieving chemical accuracy for the 10-electron systems
considered in this work.

Therefore, as mentioned in Sec. III, the focus is on the MI(2) for BeH2, and MI(3) and MI(4) for CH4, NH3, H2O,
and HF. The number of occupied orbitals in CCSD calculations was reduced by decomposing the original problem
into subproblems (increments) using the MI expansion. For BeH2, the MI(2) calculation included only two occupied
orbitals, while three occupied orbitals were used in the CCSD calculation. For the other 10-electron systems, the
MI(3) and MI(4) calculations included three and four occupied orbitals, respectively, while full CCSD calculation
included five occupied orbitals. In this study, we used relatively small-sized molecules; thus, the reduction of occupied
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orbitals was small. However, as we show later in this section, if we apply MI methods to larger-sized systems, we can
achieve a large reduction in the number of occupied orbitals. Overall, we found that MI methods can recover accurate
total energies while reducing computational cost.

TABLE II. Total energy values (hartrees) and the difference from the conventional CCSD values using MI(n)-FNO-CCSD
approach. The differences are shown in parentheses. We employ an FNO population of 99% to determine the size of the virtual
space.

CCSD MI-CCSD MI-FNO-CCSD

BeH2 MI(2) -15.835746 -15.835806 (-0.000060) -15.836066 (-0.000320)

CH4 MI(3) -40.385951 -40.385350 (0.000601) -40.385716 (0.000235)

CH4 MI(4) -40.385951 -40.385952 (-0.000001) -40.386196 (-0.000245)

NH3 MI(3) -56.400579 -56.399440 (0.001140) -56.399468 (0.001111)

NH3 MI(4) -56.400579 -56.400581 (-0.000002) -56.400693 (-0.000114)

H2O MI(3) -76.240099 -76.238622 (0.001478) -76.238514 (0.001585)

H2O MI(4) -76.240099 -76.240102 (-0.000003) -76.239986 (0.000113)

HF MI(3) -100.228154 -100.226824 (0.001331) -100.226893 (0.001261)

HF MI(4) -100.228154 -100.228157 (-0.000003) -100.227998 (0.000156)

We next investigated the accuracy of molecular energy calculation using the MI approach, in conjunction with
virtual space truncation based on the FNO approach (MI-FNO-CCSD). For the assessment of the accuracy, we chose
the criterion of virtual orbital selection using a population percentage of 99%. This criterion has been used in previous
FNO-CCSD calculations57,58,60,61. The total energies calculated using MI-FNO-CCSD, and their difference from the
reference CCSD total energies are listed in Table II. Chemical accuracy was achieved for the total energies calculated
with all the MI-FNO-CCSD approaches. The MI(3)-FNO-CCSD calculation on the H2O molecule exhibited the
largest error of 0.001478 hartrees (0.99 kcal/mol). The FNO approach reduces the number of virtual orbitals for each
subproblem in the MI expansion. For BeH2, using the MI(2) expansion, the FNO method with the threshold of 99%
occupancy discarded 17, 5, and 7 virtual orbitals from the three one-body increments, and 5, 7, and 6 virtual orbitals
from the three two-body increments, while the full problem of BeH2 had 21 virtual orbitals. Therefore, the FNO
method with a 99% threshold was able to discard at least five virtual orbitals. For the other 10-electron systems
with the MI(3) expansion, the FNO approach discarded at least 7, 5, 3, and 2 virtual orbitals for the CH4, NH3,
H2O, and HF molecules, respectively. Again, we considered smaller systems in this work, so the reduction may not
appear significant. However, we observed that the FNO virtual space truncation became more efficient as the virtual
space became larger (for an example, see Sec. IV D). Previous studies58,59,98 have shown that, even with significant
truncation of the virtual space, based on the natural occupation numbers of the density matrix, employing FNOs
leads to accurate calculation results for relative energies. Figure 2 shows the cumulative FNO occupancy percentage
as a function of the number of virtual orbitals for the molecules we examined. The values on the horizontal axis
represent the ratio of the number of virtual orbitals, calculated as “the number of virtual orbitals that are used in
the calculation” divided by “the total number of virtual orbitals of the system”. The dotted line shows the FNO
occupancy of 99%. The plots were obtained by running FNO-CCSD calculations, not by using the MI-FNO-CCSD
approach. As shown, the larger basis set reaches the 99% line sooner than the smaller basis sets. This means that
the FNO truncation can discard more virtual orbitals as the virtual space becomes larger. Therefore, if we apply
MI-FNO-CCSD to larger-sized systems or employ larger basis sets, we can achieve not only a considerable reduction
in the number of occupied orbitals but also a significant reduction in the number of virtual orbitals. We found that
the MI-FNO-CCSD method accurately recovers the total molecular energies, while reducing the computational cost,
in comparison with their parent CCSD approaches.

B. The accuracy of MI(n)-FNO-UCCSD energies and qubits required

To investigate the accuracy of MI(n)-FNO-UCCSD energies and qubits required, we first performed MI-FNO-
UCCSD calculations for BeH2. The total energies calculated are listed in Table III. Quantum simulations of UCCSD
on classical hardware require large computational resources compared to conventional CCSD; thus, we needed to
reduce the computational cost to a greater degree. In general, due to the limitations of NISQ devices, we need to
reduce the computational resources for a given wavefunction ansatz in our quantum simulations, compared to the
scenario where we use classical hardware or have access to fault-tolerant quantum hardware. We examined how the
computational cost could be reduced, by further reducing the size of the virtual space, without deteriorating the
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FIG. 2. Cumulative FNO occupancy as a function of the number of virtual orbitals for (A) BeH2, (B) CH4, (C) NH3, (D)
H2O, and (E) HF.

TABLE III. Total energy values (hartrees) and the difference from the parent CCSD value (-15.835746 hartrees) using the
MI(2)-FNO-UCCSD approach for BeH2. The calculated results when using 1–7 virtual orbitals are listed.

Number of virtual orbitals Total energy Energy difference

1 -15.820990 0.014756

2 -15.826479 0.009267

3 -15.827018 0.008728

4 -15.827508 0.008238

5 -15.828969 0.006777

6 -15.832066 0.003680

7 -15.834886 0.000860

accuracy of the results as much as possible. Figure 3 shows how the total energy of BeH2, using MI(2)-FNO-UCCSD,
behaved as a function of the number of virtual orbitals. The plot presents the difference between the MI(2)-FNO-
UCCSD and parent CCSD energies. The area filled in orange shows the region where deviations are within chemical
accuracy. We see that the MI(2)-FNO-UCCSD values approached the reference CCSD energy as the number of virtual
orbitals increases. When the number of virtual orbitals was seven, the difference from the reference energy became
as small as 0.000860 hartrees or 0.54 kcal/mol, showing that chemical accuracy was reached. For this calculation,
there were three one-body, 16-qubit increments (one occupied and seven virtual orbitals) and three two-body 18-qubit
increments (two occupied and seven virtual orbitals). As the original problem required 48 qubits without PD, this
was a large reduction in quantum resources; we believe that the present MI-FNO framework can help accelerate
the practical application of near-term quantum hardware in quantum chemistry simulations. When the number of
virtual orbitals was seven, we were able to discard 14 virtual orbitals. This roughly corresponds to the number of vir-
tual orbitals discarded when the FNO 80% threshold was applied to all increments in order to truncate virtual orbitals.
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To estimate the energy convergence behaviour as a function of the virtual space beyond 18 qubits, we first explored
whether the MI(n)-FNO-CCSD approach could be used to extrapolate the MI(n)-FNO-UCCSD energies for the BeH2

molecule. Varying the number of virtual orbitals from one to seven, we confirmed that the convergence behaviour
of the MI(n)-FNO-UCCSD and MI(n)-FNO-CCSD approaches closely resembled each other. We then extended
the MI(n)-FNO-CCSD calculations to the maximum number of virtual orbitals (21 in the present setup) to gain
an understanding of the convergence of MI(2)-FNO-UCCSD energies. Based on this extrapolation, we found that
MI(2)-FNO-UCCSD can provide chemically accurate results when the number of virtual orbitals is larger than seven.

Given that we observed that the MI-FNO-UCCSD approach can achieve chemical accuracy and that the energy
convergence behaviours of MI-FNO-UCCSD and MI-FNO-CCSD closely resemble each other, we explored the energy
convergence behaviour of the remaining molecules by using the MI-FNO-CCSD approach, as shown in Fig. 4 (A), (B),
(C), and (D). As in the case of BeH2, we found that MI(3)-FNO-CCSD approached the reference energy as the number
of virtual orbitals was increased. The fewest qubits required to achieve chemical accuracy with respect to the parent
CCSD values were 32, 32, 34, and 26 for CH4, NH3, H2O, and HF, respectively, while the qubits necessary to perform
a direct simulation of the full system were 68, 58, 48, and 38 for CH4, NH3, H2O, and HF, respectively. The number
of qubits and the number of subsystems required to achieve chemical accuracy by using the MI(n)-FNO-UCCSD
approach are shown in Table IV.

TABLE IV. Number of qubits required to obtain chemical accuracy using the MI(n)-FNO-UCCSD approach. The number of
qubits was estimated based on the energies obtained with the corresponding MI(n)-FNO-CCSD approach for CH4, NH3, H2O,
and HF. The numbers in parentheses indicate the number of increments the MI(n) approach generated.

UCCSD MI(2)-FNO-UCCSD MI(3)-FNO-UCCSD MI(4)-FNO-UCCSD

BeH2 48 18 (6)

CH4 68 32 (25) 36 (30)

NH3 58 32 (25) 32 (30)

H2O 48 34 (25) 28 (30)

HF 38 26 (25) 24 (30)

For CH4, NH3, H2O, and HF, the energy difference between MI(3)-FNO-CCSD and the reference CCSD energy, at
the point where the number of virtual orbitals was equal to the maximum number of virtual orbitals, did not converge
as well as in the case of BeH2. For example, the MI(3)-FNO-CCSD energy of H2O at the point where the number of
virtual orbitals is equal to the full virtual space still has an error of 0.00148 hartrees from the reference. We speculate
that this is due to the fact that the occupied orbitals were not spatially localized, and therefore the decomposition
of the occupied space into a smaller occupied space based on the method of increments caused the residual error.
The degree of the error may be mitigated by including higher-order body increments, so we examined the inclusion
of four-body terms in the calculation (i.e., MI(4)-FNO-CCSD) as shown in Fig. 4 (A), (B), (C), and (D). In all cases
considered, the inclusion of the four-body terms in the MI(4)-FNO-CCSD calculation largely improved the energy
convergence towards the reference energy, and the energy at the point where the number of virtual orbitals was equal
to the full virtual space differed from the reference energy by only around 5×10−5 hartrees or less. It is possible that
the residual error, likely caused by the occupied orbitals not being spatially localized, can also be mitigated by using
localized molecular orbitals. For example, we observed that using Foster–Boys localization99 improved the energy
convergence of MI(3)-FNO-CCSD towards the reference energy. We plan to discuss this improvement in more detail
in future publications. The reason why we observed highly accurate results with the MI(4)-FNO-CCSD approach
for these molecules may be because they are all 10-electron systems and the contribution from the core electrons is
usually very small when the basis sets have no core-polarization functions, such as in the cc-pVDZ basis used here.
We plan to investigate the convergence behaviour with respect to the order of bodies (e.g., three-body, four-body,
fifth-body) in the many-body expansion in the MI-FNO approach by targeting larger molecular systems.

C. Quantum resource estimation for the MI(n)-FNO-UCCSD approach

Near-term quantum hardware will be limited not only in the number of qubits, but also in the number of gate
operations. Therefore, it is important to understand the amount of quantum resources that will be needed to achieve
the desired accuracy in electronic structure calculations, as discussed in the literature52. In this section, we discuss to
what extent the MI(n)-FNO approach can reduce the quantum resources needed compared to full UCCSD simulation
without PD. The number of one- and two-qubit gates we report are considered an upper bound of the gate counts,
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FIG. 4. Energy difference from the parent CCSD approach as a function of the number of virtual orbitals when using MI(3)-
FNO-CCSD and MI(4)-FNO-CCSD for four molecules: (A)CH4; (B) NH3; (C) H2O; and (D) HF. The area filled in orange
indicates where the results are within chemical accuracy from the reference energy.

as the actual number of gate counts can vary depending on the level of circuit optimization. Using BeH2 as an
example, the MI(2)-FNO-UCCSD method achieved chemical accuracy when the number of virtual orbitals was seven
(see Fig. 3), in which case we solved the electronic structure problem for three one-body 16-qubit increments and
three two-body 18-qubits increments. Table V shows the amount of quantum resources required to solve the problem
for the increments involved in this system. All of the three one-body increments required 16 qubits; however, as the
complexity of the Hamiltonian was different in each case, the number of gate operations was also different. The same
observation holds for two-body increments. In the worst-case analysis, the greatest number of one- and two-qubit
gate counts needed to prepare the quantum state of the problem’s increments were 4180 and 6944 gates, respectively.
We consider these numbers to represent the quantum resources required to achieve chemically accurate energies in
the framework of the MI(2)-FNO-UCCSD approach.

Table VI gives a summary of the quantum resources required to achieve chemically accurate energies for all the
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TABLE V. Quantum resources for each increment generated by the MI-FNO approach for BeH2. The percentages in parentheses
indicate the amount of reduction that the MI(2)-FNO approach achieves.

# of qubits # of one-qubit gates # of two-qubit gates

one-body (1) 16 (66.7%) 794 (98.9%) 848 (99.7%)

one-body (2) 16 (66.7%) 650 (99.1%) 464 (99.8%)

one-body (3) 16 (66.7%) 794 (98.9%) 1104 (99.6%)

two-body (1,2) 18 (62.5%) 2740 (96.3%) 2304 (99.2%)

two-body (1,3) 18 (62.5%) 4180 (94.3%) 6816 (97.7%)

two-body (2,3) 18 (62.5%) 3892 (94.7%) 6944 (97.7%)

Full system 48 73,230 302,160

molecules have examined. Also shown is the degree of reduction the MI(n)-FNO-UCCSD approach was able to provide.
We found that our MI(n)-FNO-UCCSD approach considerably reduced the number of gate operations: by 74% to
98% from those required for full UCCSD simulation without PD. The resulting number of gate operations remains
very large for near-term quantum hardware; however, our MI(n)-FNO approach is general, and can be combined with
any other ansatzes that may provide shallower circuits than UCCSD, such as the “hardware-efficient” ansatz26 and
QCC methods30,31.

TABLE VI. Quantum resources required to obtain chemically accurate energies. The number before the slash represents
the quantum resources needed when using the MI(n)-FNO approach, and the number after the slash represents the quantum
resources required for full UCCSD simulation without PD. The percentages given in parentheses represent the extent of reduction
that the MI(n)-FNO approach achieved.

# of qubits # of one-qubit gates # of two-qubit gates

BeH2 18/48 (63%) 4180/73,230 (94%) 6944/302,160 (98%)

CH4 32/68 (53%) 143,214/1,726,498 (92%) 384,592/9,482,448 (96%)

NH3 32/58 (45%) 103,830/731,602 (86%) 275,520/3,373,264 (92%)

H2O 34/48 (29%) 62,934/241,138 (74%) 182,592/929,648 (80%)

HF 26/38 (32%) 36,870/205,498 (82%) 83,328/660,032 (87%)

D. Qubit count estimation for an industrial catalyst molecule

In this section, we provide qubit count estimations for the ”constrained-geometry” metallocene olefin polymerization
catalyst (“CGC”)92 (see Fig. 6), as an early indication of the efficacy of the MI(n)-FNO approach for molecular systems
relevant to industry. The experimental molecular geometry of CGC92 and the cc-pVDZ and the cc-pVTZ basis sets62

were used. In Table VII, we summarize the qubit count estimations when only the FNO virtual space truncation
was applied and when the MI(3)-FNO approach was applied. In order to estimate the number of qubits for the
FNO virtual space truncation, we added the number of FNO virtual orbitals (Nv) after truncation to the number
of occupied orbitals Nocc in the system. The number of virtual orbitals Nv in the FNO approach was determined
based on a given percentage of FNO occupancy for the full molecular system. So, the total qubit count was obtained
using 2(Nv + Nocc). In the qubit count estimation for the MI(3)-FNO approach, the maximum number of occupied
orbitals was three, corresponding to the three-body increments in the MI(3) expansion. Hence, the total qubit count
in Table VII was obtained using 2(Nv + 3). This is a rough estimate of the necessary number of qubits needed for the
MI(3)-FNO approach, and a more accurate assessment is needed. The number of qubits needed when employing the
MI(3) approach on its own was 784. When employing the largest value of the FNO percentage (99%) to truncate the
virtual space, the MI(3)-FNO approach reduced the qubit requirements by almost half. Considering that the MI-FNO
approach with 99% FNO occupancy produced very accurate results, as shown in Sec. IV A (see Table II), we speculate
that we can obtain similar results for larger molecules. The number of qubits drastically decreased as we truncated
the virtual space to a greater degree. Comparison of the qubit count between the FNO and MI(3)-FNO approaches
showed that the MI(3)-FNO approach had a smaller qubit requirement than the FNO approach, regardless of the
FNO occupancy threshold. Also, we observed that the advantage of the MI(3)-FNO approach over the FNO approach
became clearer as the FNO occupancy became smaller, resulting in the number of virtual orbitals in the computational
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FIG. 5. Quantum resources required to prepare the quantum state of the subsystem as a function of the number of virtual
orbitals. The MI(n)-FNO approach produces many increments, and the quantum resources that are required for an increment
vary depending on the increment. The largest numbers of qubit, one- and two-qubit gate counts are plotted.

space becoming small and the number of occupied orbitals becoming dominant in the computational space. Therefore,
we believe that the MI-FNO approach can be beneficial when targeting larger molecular systems in which there are
many occupied orbitals. The number of increments in the MI-FNO approach becomes large as the number of occupied
orbitals in the system becomes large (the CGC molecule has about 117,569 increments in the three-body expansion).
However, the electronic structure problem can be solved independently for each increment; thus, these problems can be
solved in parallel. Furthermore, we can discard small increments by using either distance- or energy-based screening,
or a domain-based approach71,79 can help us reduce the number of increments while maintaining the accuracy level
of the calculation. It would be interesting to explore what the minimal quantum resource requirements would be for
achieving chemical accuracy in the total energies in the case of these larger molecular systems after implementing a
highly parallel framework.

Ti CH3
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N

Si

H3C
H3C

CH3
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FIG. 6. Molecular structure of CGC
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TABLE VII. Qubit count estimation for the CGC molecule. The molecule has 89 occupied and 389 virtual orbitals.

cc-pVDZ cc-pVTZ

FNO occupancy FNO MI(3)-FNO FNO MI(3)-FNO

99% 768 596 1298 1126

90% 452 280 556 384

80% 376 204 408 236

70% 324 152 348 176

60% 286 114 304 132

50% 256 84 268 96

40% 232 60 240 68

30% 212 40 216 44

20% 196 24 198 26

10% 186 14 186 14

Full system 956 2208

V. CONCLUSION

Quantum computing is a new computing paradigm that has the potential to accelerate the materials innovation
process. In the era of noisy, intermediate-scale quantum (NISQ) devices, reducing the problem size of molecular
systems is essential in helping to advance the application of quantum computing in materials science and life science.
At the same time, it could provide opportunities for the further characterization of the usefulness of NISQ devices for
quantum chemistry simulations by allowing us to conduct hardware experiments based on smaller, yet more realistic,
chemistry problems.

In this paper, we have described a novel framework for the systematic reduction of both the occupied and virtual spaces
in quantum chemistry simulations on near-term quantum devices. This framework employs the method of increments
(MI) in conjunction with frozen natural orbitals (FNO). This method, referred to as the MI-FNO approach, distributes
the occupied orbitals among subproblems (or increments) based on the many-body expansion of the correlation energy
in terms of occupied orbital space, and truncates the virtual orbital space based on FNOs, which are obtained using
the one-particle density matrix from second-order, many-body perturbation theory.

The framework of the MI-FNO approach is not tied to any particular method of predicting the correlation energy of
the increments, so one can employ any algorithm, including conventional quantum chemistry methods, such as FCI
and CC, and quantum algorithms, such as the phase estimation algorithm and the variational quantum eigensolver
(VQE). As a demonstration of the applicability of the MI-FNO approach to the quantum computing framework, we
used VQE in combination with unitary coupled-cluster (UCC) ansatz, the parametric ansatz employed in our study.

We refer to this combined framework as the MI(n)-FNO-UCCSD approach (or the MI(n)-FNO-CCSD approach if
the classical CCSD method is used to obtain the correlation energy), where n indicates the expansion up to n-body
increments. We examined its accuracy and feasibility by studying small molecules, namely, BeH2, CH4, NH3, H2O, and
HF, in a cc-pVDZ basis set. We observed that the MI-FNO approach can achieve chemical accuracy by significantly
reducing both the number of qubits and the number of gate operations, which suggests that it can be used to build
a scalable quantum chemistry simulation platform on quantum hardware. Furthermore, as an early demonstration of
the efficacy of our approach for larger molecules, we presented a qubit count estimation on an industrially relevant
molecule, “constrained-geometry catalyst” (CGC), for olefin polymerization, as a representative catalyst. We found
that, even by employing a modest truncation of the virtual space using 99% of the FNO occupancy, the MI-FNO
approach reduced the qubit requirements by almost a factor of one half. We plan to perform MI-FNO calculations
for large molecules, including CGC, and identify the quantum resources required to achieve chemical accuracy in the
energy calculations. These calculations would allow us to build a comprehensive table to determine the relationship
between the accuracy of the results, the orders of the many-body expansion, and the FNO occupancy. Such a table
would help establish a framework for identifying both the optimal order of many-body expansion and the optimal
FNO occupancy threshold in an a priori fashion, which would make the MI-FNO approach more practical.
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In addition to the capability of reducing the computational requirements of the electronic structure calculation while
maintaining the level of accuracy, the MI-FNO approach has another advantage: calculations of the electronic structure
problem for each increment can be performed in a highly parallel manner. In practice, this advantage provides us with
several computational options, making it possible to adapt the demands of a calculation to the evolving performance
envelope of quantum hardware devices by employing both classical and quantum hardware in a flexible manner.

Our MI-FNO approach is one of the core methodologies included in QEMIST, the Quantum-Enabled Molecular ab
Initio Simulation Toolkit93, our new software package designed to run on both quantum and classical hardware back
ends. It can assist in scaling up the size of molecular systems that can be simulated in quantum chemistry applications
through various types of problem decomposition techniques, aiding computational chemistry studies for large-scale
industrial applications.
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