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Eigenstate preparation is ubiquitous in quantum computing, and a standard approach for gener-
ating the lowest-energy states of a given system is by employing adiabatic state preparation (ASP).
In the present work, we investigate a variational method for determining the optimal scheduling
procedure within the context of ASP. In the absence of quantum error correction, running a quan-
tum device for any meaningful amount of time causes a system to become susceptible to the loss
of relevant information. Therefore, if accurate quantum states are to be successfully generated, it
is crucial to find techniques that shorten the time of individual runs during iterations of anneal-
ing. We demonstrate our variational method toward this end by investigating the hydrogen and
P4 molecules, as well as the Ising model problem on a two-dimensional triangular lattice. In both
cases, the time required for one iteration to produce accurate results is reduced by several orders of
magnitude in comparison to what is achievable via standard ASP. As a result, the required quan-
tum coherence time to perform such a calculation on a quantum device becomes much less stringent
with the implementation of this algorithm. In addition, our variational method is found to exhibit
resilience against control errors, which are commonly encountered within the realm of quantum
computing.

I. INTRODUCTION

It is widely recognized that attempts to realize solu-
tions to computational problem sets involving quantum
systems via classical hardware quickly give rise to in-
tractable bottlenecks. This consequence becomes readily
apparent as the amount of parameters required to de-
scribe the quantum state in question increases exponen-
tially with growing system size. A commonly encoun-
tered manifestation of this phenomenon presents itself
within the context of quantum chemistry, where issues
such as improving the computational efficiency of deter-
mining electronic correlation energies are an ongoing en-
deavour [1, 2].
Solutions to problems of this nature are highly desirable,
yet finding them is notoriously computationally challeng-
ing, and far beyond the capabilities of even the most pow-
erful of present-day supercomputers. Researchers have
tried to mitigate this issue of intractability by imple-
menting heuristics and approximation techniques such
as density functional theory (DFT) in attempts to de-
crease the computational cost of simulating more com-
plex molecular systems [3, 4]. Nevertheless, even state-
of-the-art approaches such as the employment of coupled-
cluster techniques are met with considerable limitations,
as they can accurately handle, at most, molecules of a few
dozen atoms in size [5–7]. Essentially, the common ob-
stacle that these techniques all share can be understood
as an established trade-off between the computational ef-
ficiency of the solver, and the accuracy of the obtained
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approximate solution.
As a promising initiative to alleviate this issue and

reduce the resources required, there has been increas-
ing interest in solving quantum problems using quan-
tum devices [8–10]. These methods stand to offer a
more scalable alternative that would help circumvent the
limitations currently imposed by classical computation.
However, the main challenge faced in the near term for
quantum devices is the absence of error correction tech-
niques [11]; without proper error corrections, computa-
tional results may not be reliable due to qubit decoher-
ence and control errors. Two ways to overcome draw-
backs of this nature that present themselves in the ab-
sence of error correction is therefore to shorten the time
taken to perform a single run of a quantum algorithm,
and to make the computational process as noise resilient
as possible. One way to achieve these aims is by em-
ploying variational methods [12–14] using shallow circuit
ansatz (e.g., see [15–17]) in quantum–classical hybrid al-
gorithms.

In this paper, we consider the adiabatic approach of
quantum computation for solving the problem of finding
eigenstates. Adiabatic state preparation as a computa-
tional approach offers many desirable features, such as
robustness against various types of noise [18–22], the ab-
sence of Trotterization errors, and the absence of accu-
racy limitations that arise from the requirement of hav-
ing highly complicated ansatz. Despite these advantages,
there remain factors that influence the choice of the an-
nealing time T that can affect the accuracy of the ob-
tained results.

In ASP, if T is defined to be too small, one subjects
the system to the potential of undergoing harmful non-
adiabatic transitions, and as a result the computation
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becomes susceptible to finding inaccurate results. Con-
versely, selecting too large a value of T can result in the
loss of quantum information due to decoherence. The
major challenge of near-term devices is that decoherence
may occur quite early—before the adiabaticity condition
is met—the consequence of which is that we obtain an
inaccurate result.

Therefore, the main objective of this work is to de-
velop an algorithm in which T can be chosen small
enough to avoid decoherence, while simultaneously avoid-
ing harmful non-adiabatic transitions. Based on previ-
ous works [14, 23], we consider a variational method to
achieve this objective.

In the context of molecular systems, it was successfully
demonstrated that a significant reduction in the required
annealing time per individual run was achieve to a degree
of accuracy within a certain threshold, compared to the
standard ASP method [23].

This was achieved by initializing a set of new terms, de-
noted the “navigator Hamiltonian”, during the annealing
schedule. Each respective Hamiltonian involved in the
computation—the initial Hamiltonian, navigator Hamil-
tonian, and final Hamiltonian—was assigned a predeter-
mined scheduling function, similar to the settings em-
ployed in [14, 24–26]. Additionally, the coefficients of the
defining terms present in both the navigator Hamiltonian
and the initial Hamiltonian were defined variationally. It
is worth noting that in the case of molecular systems
investigated in [23], the reduction in annealing time re-
quired to achieve a specified accuracy was enabled in part
by accessing excited states during annealing.

A natural consequence of utilizing this variational tech-
nique towards establishing the schedule functions is that
the accuracy of the obtained quantum state is highly de-
pendent on the schedule functions of the Hamiltonians
involved. Therefore, finding optimal schedule functions
is essential in investigating whether quantum annealing
can provide an advantage in solving combinatorial opti-
mization problems. Various forms of schedule functions
have been considered both theoretically and experimen-
tally. Examples include the inhomogeneous transverse
field [27–30], which is characterized by individual qubits
possessing distinct transverse field strengths; the anneal
“pause and quench” schedule [31, 32], where the schedul-
ing functions are held constant for a certain period of
time followed by a rapid modification; and reverse an-
nealing [25, 33–38], which operates by starting a system
in a classical state, introduces quantum fluctuations, and
finally terminates by the removal of these fluctuations.

The variational method we present in this paper incor-
porates these ideas to solve more general problems within
a shortened annealing time per individual iteration. We
investigate the efficiency of the method in two contexts,
the first being a quantum chemistry problem and the sec-
ond an optimization problem.

The structure of the paper is as follows. In Sec. II, we
explain the variationally scheduled quantum simulation
algorithm (VSQS). In Sec. III, we demonstrate the effi-

ciency of VSQS in solving the eigenstates problem for the
hydrogen and P4 molecular systems. In Sec. IV, we ap-
ply VSQS in solving the Ising model. In Sec. V, we study
how control error is mitigated in VSQS by implementing
an inaccurate final Hamiltonian into the algorithm’s pa-
rameters. We conclude our work with a summary of our
analysis in Sec. VI.

II. THE VARIATIONALLY SCHEDULED
QUANTUM SIMULATION ALGORITHM

In the case of standard ASP, the time-dependent
Hamiltonian H has both a fixed initial Hamiltonian Hini

and final HamiltonianHfin, as well as their predetermined
schedule functions A(t) and B(t), respectively:

H = A(t)Hini +B(t)Hfin (1)

For a given annealing time T , the coefficients A(t)
and B(t) satisfy the following boundary conditions:
A(0) = B(T ) = 1 and A(T ) = B(0) = 0. In the case
of quantum annealing techniques that target Ising mod-
els, the Hamiltonian Hini is usually taken to be a sum-
mation of the transverse field for all the qubits: Hini =∑

i σ
x
i . In recent years, the efficiency of quantum an-

nealing for more-general functions has been investigated.
One approach is to increase the flexibility of the func-
tions A(t) and B(t) themselves. Instead of monotoni-
cally and smoothly changing functions, non-monotonic
or non-smooth functions are considered [25, 31–38].

The approach that we implement in VSQS is to find
the optimal scheduling functions variationally by using a
quantum–classical hybrid method. Let us first consider
the case where Hini and Hfin both have a single coefficient
each, A(t,a) and B(t, b):

H(t,a, b) = A(t,a)Hini +B(t, b)Hfin (2)

The schedule functions A and B are defined using vari-
ational parameters a = (a1, a2, . . .) and b = (b1, b2, . . .).
As one example of defining the functions by using varia-
tional parameters, we split the annealing time T into S
intervals, (i− 1)T

S < t ≤ iTS , i ∈ [1, S]. At the end of the
i-th interval, the schedule functions A and B take param-
eters ai and bi, after which they are linearly interpolated
in the intervals:

A(t,a) =
ai − ai−1

T/S

(
t− (i− 1)

T

S

)
+ ai−1

B(t, b) =
bi − bi−1

T/S

(
t− (i− 1)

T

S

)
+ bi−1 (3)

In the above equations, the parameters a0 = bS = 1 and
aS = b0 = 0 in order to satisfy the required boundary
conditions. Therefore, we do not treat them as varia-
tional parameters. Another example of the schedule func-
tion has only two values, 0 and 1, where the duration of
each operation is determined variationally. This so-called
“bang-bang” control procedure is known to be optimal in
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the case of classical systems, according to Pontryagin’s
principle. However, the bang-bang control technique may
or may not be optimal for quantum systems under certain
conditions [39, 40].

The structure of VSQS is shown in Fig. 2. To run
VSQS, we first generate an initial set of the variational
parameters (a(0), b(0)), and subsequently perform the
parametric ASP H(t,a(0), b(0)),

|ψ(T,a(0), b(0))〉 = T exp

(
−i
∫ T

0

H(t,a(0), b(0))dt

)
|ψ(0)〉,

(4)

where T represents the time ordering operator. From the
generated quantum state, the expectation value of the
final Hamiltonian, E = 〈Hfin〉, is obtained via measure-
ment. In the case of combinatorial optimization prob-
lems, Hfin is a function of σz only; therefore, one mea-
surement is sufficient for an adequate evaluation of the
energy. On the other hand, in the case of quantum prob-
lems, terms in Hfin do not necessarily commute with each
other, and the ground state of Hfin is therefore not an
eigenstate of any individual term. As a consequence, we
need to measure the expectation value of each operator
by repeatedly preparing the state. It is worth mention-
ing that terms that qubit-wise commute with each other
can be evaluated at the same time. Notably, various de-
vices allow measurements to be performed only in the
computational basis. Thus, in order to measure terms
containing σx or σy, single-qubit rotations for the corre-
sponding qubits need to be performed at the end of the
annealing process so that the term to measure becomes a
tensor product of σz and the identity operator I. Recall
that the expectation value 〈Hfin〉 is a function of varia-
tional parameters, and therefore optimal variational pa-
rameter values must be chosen. The data representing
the obtained energy and the variational parameters are
sent as input to a classical optimizer, which then updates
the values (a(1), b(1)). Quantum annealing is performed
based on the updated values (a(1), b(1)), and the calcula-
tions are iterated until the convergence condition of the
energy has been satisfied.

Another example implementation of VSQS we consider
is one that provides an independent schedule function for
each term. In employing quantum annealing to target
Ising problems, in contrast to using a single coefficient
A(t) for all of the transverse fields, we instead consider
the qubit-dependent coefficient Ai(t):

H =
∑
i

Ai(t)σ
x
i +B(t)Hfin (5)

This type of protocol is commonly denoted “inhomo-
geneous transverse field scheduling”, or “annealing off-
set scheduling”. Theoretical research has suggested that
dramatic improvements in the likelihood of success can
be accomplished by applying qubit-independent trans-
verse fields [27–30]. To extend this idea toward solving
more-general problems, one can employ term-dependent

FIG. 1. Variationally determined time dependence

scheduling in VSQS. To achieve this, let us write

Hini =

Mini∑
i=1

Jiσ
i
ini, Hfin =

Mfin∑
j=1

Jjσ
j
fin, (6)

where Mini and Mfin are the numbers of terms in Hini

and Hfin, respectively, σi is a tensor product of Pauli
matrices, and Ji, Jj are coefficients. In VSQS, the time
dependence of each term is defined by the variational
parameters ai, bj :

H =

Mini∑
i=1

Ai(t,ai)Jiσ
i
ini +

Mfin∑
j=1

Bj(t, bj)Jjσ
j
fin (7)

Note that some of the coefficients can be the same
function, for example, ai = aj for some i 6= j. This
reduces the number of variational parameters and
therefore reduces the computational cost of the classical
optimizer. In what follows, we consider distributing σi

ini

and σj
fin into I and F groups, respectively, and give each

group an independent schedule function.

Finally, we consider the addition of terms to VSQS.
While it is standard to choose the final Hamiltonian as
the problem Hamiltonian in whose ground state we are
interested, there is no restriction in what kind of terms
are switched on during annealing. In [14, 23–26], the
additional terms were introduced in order to improve
computational performance. We call the set of additional
terms a navigator Hamiltonian Hnav. The only condition
that must be satisfied is that the schedule function of
Hnav is zero at both the beginning and the end of the
annealing process,

H(t,a, b, c) = A(t,a)Hini +B(t, b)Hfin + C(t, c)Hnav ,
(8)

with C satisfying the boundary conditions
C(0) = C(T ) = 0, and a nontrivial choice of Hnav.
In [23], Hnav was chosen to be a cluster operator that
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FIG. 2. Iteration loop of VSQS

was used in either the unitary coupled-cluster (UCC)
or generalized unitary coupled-cluster (GUCC) method.
In example combinatorial optimization problems, non-
standard quantum fluctuations such as σx

i σ
x
j interactions

were used as navigator Hamiltonians [26, 41–48].

III. APPLICATION TO MOLECULAR
SYSTEMS

A. Hydrogen molecule

We demonstrate the efficiency of VSQS within the con-
text of determining the ground states of various molecu-
lar systems via a direct comparison with results obtained
using the standard ASP approach. The number of vari-
ational parameters used in the algorithm are determined
by the split number of the annealing time (S), the group
number of the initial Hamiltonian (I), and the group
number of the final Hamiltonian (F ). As an initial exam-
ple, we consider a hydrogen molecule, whose Hamiltonian
takes the form

Hfin = f0 + f1(σz
1 + σz

2) + f3σ
z
1σ

z
2 + f4σ

x
1σ

x
2 , (9)

where we use the Bravyi–Kitaev transformation [49] of
the second quantized Hamiltonian and remove two qubits
based on the conservation of the spin symmetries [50, 51].
As this is a two-qubit problem with only σz

i σ
z
j and σx

i σ
x
j

two-qubit couplings, it is feasible for this model to be
implemented on a hardware platform such as [52]. More
general chemical problems usually possess higher-order
couplings, and in such cases the use of perturbative gad-
gets to reduce these higher-order couplings to two-qubit
couplings may be required. For more detail on such cases,
see [53–57]. The initial Hamiltonian for the system is
taken as the Hartree–Fock Hamiltonian

Hini = g1(σz
1 + σz

2). (10)

In order to see the roles played by time splitting and
grouping terms in VSQS, we study three different cases of
the split number, the initial group number, and the final
group number: (S, I, F ) = (2, 1, 1), (5, 1, 1), and (5, 2, 4).
In the case of (S, I, F ) = (2, 1, 1) or (5, 1, 1), we do not
split the terms in the initial and the final Hamiltonians.
In this sense, they are homogeneous. The split number
S = 2 is the simplest nontrivial schedule and S = 5 has
more flexibility. In the case of (S, I, F ) = (5, 2, 4), the
number of I and F are chosen to equal the maximum:
the number of terms in the initial Hamiltonian is 2 and
that of the final Hamiltonian, except the term propor-
tional to the identity, is 4. In this sense, it is maximally
inhomogeneous. For (S, I, F ) = (2, 1, 1) and (5, 1, 1), the
time-dependent Hamiltonian is given by

H = A(ai)Hini +B(bi)Hfin , (11)

with i = 1 and i ∈ [1, 4] for (2, 1, 1) and (5, 1, 1), re-
spectively. For (5, 2, 4), all terms have the unique time
dependence

H =

2∑
k=1

Ak(ai)σ
z
k +

4∑
j=1

Bj(bi)σj , (12)

where σj = {σz
1 , σ

z
2 , σ

z
1σ

z
2 , σ

x
1σ

x
2}.

The nuclear separation distance is chosen to be

d = 1
◦
A, and the amplitudes |Ak| and |Bk| are

bounded by the value 10. To set the range for
the variational parameters, we use the limited-memory
Broyden–Fletcher–Goldfarb–Shanno method for bound-
constrained optimization (L-BFGS-B) as an optimizer.
The main purpose of this constraint in the amplitude of
the variational parameters is to avoid a large deviation in
the norm of the Hamiltonian from the one for standard
ASP. As a comparison, standard ASP is considered with
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the schedule functions

A(t) = 1−
(
t

T

)2

, B(t) =

(
t

T

)2

. (13)

The obtained energy as a function of the annealing
time T is shown in Fig. 3. The tolerance of the optimizer
is set to 10−6. The optimizer converges between 50–75
iterations for T < 0.5 and 25–50 iterations for T > 0.5.
As a measure of the accuracy of the result, we use the
chemical accuracy (1 kcal/mol). The adiabatic theorem
guarantees that the result will converge to the exact re-
sult as the annealing time T is taken to be large in the
absence of noise and errors. We consider annealing time
in order to achieve chemical accuracy TCA as a measure of
efficiency. We emphasize that this is the annealing time
per individual run, since this is the relevant quantity for
obtaining accurate results on noisy quantum devices, not
the total annealing time.

The numerical results show that in the example of a hy-
drogen molecule, there is no clear difference in accuracy
between different groupings. In all three cases studied,
the value of the energy drops rapidly from the Hartree–
Fock energy to the exact energy at TCA ' 0.2. On the
other hand, it decreases continuously in the case of stan-
dard ASP and achieves chemical accuracy at TCA ' 12.9.

FIG. 3. Obtained energy E as a function of the annealing
time T . The dotted green line, and the solid light-blue, dotted
yellow, and solid blue lines are the results of standard ASP,
and VSQE with (S, I, F ) = (2, 1, 1), (5, 1, 1), and (5, 2, 4),
respectively. The amplitudes |Ak| and |Bk| are bounded by
10.

Next, we study the dependence of accuracy on the am-
plitude. For a fixed group number (5, 1, 1), we change the
upper bound of the amplitudes. The main objective is to
understand whether the achievement of the shorter an-
nealing time is due to the large amplitude of the Hamil-
tonian. We study three upper bounds: 1, 10, and 100.
The obtained energy as a function of the annealing time
is shown in Fig. 4. For the case of the amplitude with

a bound of 1, the energy decreases smoothly from the
Hartree–Fock energy to the exact energy. The time to
chemical accuracy is TCA ' 1.1. On the other hand, the
obtained energies for the cases of amplitudes bounded by
10 and 100 are the same, and they suddenly drop from the
Hartree–Fock energy to the exact energy at TCA ' 0.2.
This shows that the optimal schedule functions are within
the range of ±10 for the entire t ∈ [0, T ] and an increase
in the bound does not improve the performance. Notice
that since we set boundary conditions for the amplitudes
at t = 0 and T , for a given set of group numbers, one
cannot simply rescale the Hamiltonian to shorten the an-
nealing time.

FIG. 4. Obtained energy E as a function of the anneal-
ing time T . The dotted green line, and the solid light-blue,
dotted yellow, and solid blue lines are the results of standard
ASP, and VSQE with (S, I, F ) = (5, 1, 1) and the amplitudes
bounded by 1, 10, and 100, respectively.

The required annealing time changes as the nuclear
separation distance changes. TCA for various nuclear sep-
aration distances is shown in Fig. 5. For standard ASP,
TCA tends to increase as the distance increases. The
same feature is observed in [52]. TCA decreases between

d = 1.8
◦
A and 3

◦
A. As explained in the Appendix, the

obtained energies show some oscillation as a function of
the annealing time T . This indicates that the annealing
process uses non-adiabatic transitions to reach accurate
results in a shorter time than expected from the adia-
batic condition. See, for instance, [58–61]. In the case
of VSQS, TCA has a different dependence on d compared
to the standard ASP case. It takes the maximum val-
ues between d = 2.8 and 3.0 for (2,1,1) with TCA ' 0.7,
whereas they are between d = 2.8 and 3.6 for (5,1,1) and
(5,2,4) with TCA ' 0.32. TCA is small for standard ASP
for these distances due to the non-adiabatic transitions.
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FIG. 5. Time to chemical accuracy for H2. The dotted
green line, and the solid light-blue, dotted yellow, and solid
blue lines are the results of standard ASP, and VSQE with
(S, I, F ) = (2, 1, 1), (5, 1, 1), and (5, 2, 4), respectively.

B. P4 molecule

The second example system we investigate is P4, a sys-
tem of two hydrogen molecules with bonds lying parallel
to each other. In particular, we choose a square con-
figuration where each hydrogen atom is located at the

vertex and each edge has a distance 2
◦
A. One moti-

vation for considering this system is that it is difficult
to obtain an accurate energy value with this configura-
tion because of degeneracy. It was shown in [23] that
both the classical method with coupled-cluster singles
and doubles (CCSD), and the variational quantum eigen-
solver (VQE) with unitary coupled-cluster singles and
doubles (UCCSD), fail to achieve chemical accuracy. We
study the performance of VSQS for the fixed amplitude
bounds |Ai|, |Bi| ≤ 10. Three choices for the group
numbers (S, I, F ) = (2, 1, 1), (5, 1, 1), and (5, 6, 10) are
considered. The results are shown in Fig. 6. In stan-
dard ASP (shown using a dotted green line), the energy
decreases monotonically as a function of the annealing
time. It requires T ≥ 456 to achieve chemical accu-
racy. For all the cases using the variational method, the
energy decreases much faster than with standard ASP.
However, the details of the decrease in energy is different
from the case of hydrogen. For the hydrogen molecule,
there was no difference despite the choice of group num-
ber. However, the difference is clear in the case of P4.
The group number (5, 1, 1) provides a more stable con-
figuration compared to (2, 1, 1). Therefore, the increase
of the split number is important. Moreover, the result
for the group number (5, 6, 10) reaches chemical accuracy
around TCA ' 0.9, whereas those of (2, 1, 1) and (5, 1, 1)
plateau for a certain range of T before achieving chemical
accuracy around TCA ' 133 and TCA ' 23, respectively.

FIG. 6. Obtained energy E as a function of the annealing

time T for the P4 molecule with a distance d = 2
◦
A. The

dotted green line, and the solid light-blue, dotted yellow, and
solid blue lines are the results of standard ASP, and VSQE
with (S, I, F ) = (2, 1, 1), (5, 1, 1), and (5, 6, 10), respectively.
The amplitudes |Ak| and |Bk| are bounded by 10.

IV. ISING MODEL

We now apply VSQS for solving an Ising model prob-
lem. As an example, we consider a triangular lattice,
shown in Fig. 7. Each vertex (shown using a light-
blue circle) represents a qubit, each solid dark-blue line
(within the upper layer or lower layers) represents an-
tiferromagnetic coupling (JAF > 0), and each edge of
dashed red line (inter-layer) represents a ferromagnetic
coupling (JF < 0). The values of the ferromagnetic and
antiferromagnetic couplings are randomly generated:

Hfin =
∑

(i,j)∈Intralayer

JAF
ij σz

i σ
z
j +

∑
(k,l)∈Interlayer

JF
klσ

z
kσ

z
l

(14)

We consider the following Hamiltonian:

H = A(t)Hini +B(t)Hfin +
∑

(i,j)∈Edges

Cij(t)σ
x
i σ

x
j (15)

We take Mini = Mfin = 1 while all the terms in Hnav

have independent time dependence. We choose the split
numbers to be 2 and 5.

First, we look at the case where S = 5. Figure 8 shows
the success probability of standard ASP and VSQS as a
function of the annealing time T . In the standard ASP
case, the success probability remains close to zero until
T ∼ 10, then begins to increase. At T ' 116, the success
probability reaches 0.99. On the other hand, in VSQS,
the probability is greater than 0.99 even when the an-
nealing time is as short as 0.01.

Figure 9 and Fig. 10 show the optimal schedule func-
tions {A(t), B(t), Cij(t)} for T = 0.1 and T = 2.0, respec-
tively. The solid red line represents the coefficient A(t)
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FIG. 7. Triangular lattice. Circles represent qubits, and the
solid dark-blue and the dashed red lines represent antiferro-
magnetic and ferromagnetic couplings, respectively.

FIG. 8. Success probability p of standard ASP and VSQS for
the triangular lattice Ising model

of Hini, and the solid green line represents the coefficient
B(t) of Hfin. The dashed light-blue lines represent the
coefficients Cij(t) of the terms in Hnav. At T = 0.1, two
couplings in Hnav become large during annealing, while
the others remain small. As the annealing time increases,
all the schedule functions take values within a small pa-
rameter region. The schedule functions Cij(t) fluctuate
between both positive and negative values. This means
that the Hamiltonian is non-stoquastic.

Our motivation for using the variational method is to
obtain accurate results despite the fact that quantum
devices are noisy. Therefore, we have focused on the
annealing time per individual run thus far. We also
study the total annealing time in the variational ap-
proach. Let us first consider standard ASP. We denote
the success probability at an annealing time Tstand as
pstand(Tstand). By repeating the same calculation Nstand

times, one can increase the success probability using the
expression 1 − (1 − pstand(Tstand))Nstand with the total
computational time TstandNstand.

In the case of VSQS, we must first iterate the per-
formed calculations to optimize variational parameters.
Let us denote the number of iterations for optimizing
the variational parameters by Nopt

VSQS, and the annealing
time per individual run by TVSQS. In the case of varia-
tional methods, including a quantum approximate opti-

FIG. 9. Schedule functions of T = 0.1 for the Ising model

FIG. 10. Schedule functions of T = 2.0 for the Ising model

mization algorithm (QAOA) [62], which uses expectation
values of the Hamiltonian to adjust variational parame-
ters, one needs to repeat a given calculation in order to
reduce statistical errors. We denote the repetition num-
ber for obtaining an expectation value of a Hamiltonian
by M . Having Nopt

VSQS iterations of the optimization pro-

cess requires Nopt
VSQSM repetitions on a quantum device.

The success probability of an individual run at TVSQS is
denoted by pVSQS(TVSQS). Then, by repeating the calcu-
lation Nadd

VSQS times with fixed variational parameters, we
can obtain the correct answer with a success probability

of 1−(1−pVSQS(TVSQS))N
add
VSQS and with a total annealing

time of Tvrs(N
opt
VSQSM +Nadd

VSQS). The change of the suc-

cess probability as a function of iterations Nopt
VSQS is given

in Fig. 11. We choose S = 2 and consider random values
taken from the interval [−1, 1] for the initial variational
parameters Cij . The group number for the navigator
Hamiltonian is 7. One of the main differences between
a quantum chemistry problem and a combinatorial opti-
mization problem is that it is not necessary for the com-
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FIG. 11. Success probability as a function of iteration num-
ber. The split number S = 2. The initial values for Cij are
chosen randomly from the interval [−1, 1].

binatorial optimization problem to achieve very high ac-
curacy for a single run. So long as the success probability
for a single run is reasonably high, one can increase the
success probability quickly by repeating the calculations.
Therefore, we choose a low tolerance for the optimiza-
tion: tol = 1.0. We use the constrained optimization by
linear approximation (COBYLA) algorithm. We see that
the success probability increases within a relatively small
number of iterations for annealing times TVSQS = 0.1 and
1.0. For instance, for TVSQS = 1.0, the optimization con-
verges to 0.759 after 24 iterations; for TVSQS = 0.1, the
optimization converges to 0.985 after 71 iterations; and
for TVSQS = 0.01, the optimization converges to 1.0 af-
ter 434 iterations. Therefore, the total annealing time
needed to find the correct result with a success proba-
bility of 99% is 4.34M for TVSQS = 0.01, 7.2M + 0.1
for TVSQS = 0.1, and 24M + 4 for TVSQS = 1.0 (i.e., 4
iterations after the optimization converges). For refer-
ence, the total annealing time needed for standard ASP
to achieve a success probability of 99% is Tstand = 116.

V. SYSTEMATIC CONTROL ERROR

To date, many experiments (for instance, [12, 15, 51])
have demonstrated that the variational quantum eigen-
solver (VQE) is robust against systematic control errors.
In VQE, quantum circuits are characterized by varia-
tional parameters. When the quantum gates over-rotate
or under-rotate qubits due to inaccurate control, a clas-
sical optimizer finds different input angles that lead to
more-accurate qubit rotations on quantum devices.

In ASP, a critical control error may occur in the cou-
plings of the final Hamiltonian Hfin. In the ideal case,
the quantum state reaches the ground state of Hfin at
the end of the annealing process. However, without er-
ror correction, the couplings on a quantum device may

be degraded by control errors. In that case, the final
state will be a ground state of an inaccurate Hamilto-
nian. Some approaches, such as using a non-vanishing
value of either temperature or the transverse field, were
considered in order to improve the success probabilities
of quantum annealing [63, 64].

In this section, we investigate whether VSQS is capa-
ble of correcting such errors. One approach is to make
the final Hamiltonian variational. Let us describe the
accurate final Hamiltonian in terms of its components:
Hfin =

∑
i Jiσ

i
fin. In the presence of control errors, the

couplings of the final Hamiltonian on a quantum device
have different values, which we denote by

H̃fin =
∑
i

J̃iσ
i
fin. (16)

One way to use the variational method for mitigating
systematic control errors is to treat the final Hamilto-

nian as variational. Starting from J
(0)
i = Ji as in-

put couplings, one runs a time-dependent Hamiltonian
H(t) = A(t)Hini + B(t)H̃fin, measures the expectation
values of the Pauli words 〈σi

fin〉, and then estimates the
energy using the accurate coefficients E =

∑
i Ji〈σi

fin〉.
Based on the result, a classical optimizer updates the in-

put couplings J
(k−1)
i → J

(k)
i so that the couplings on

the quantum device J̃
(k)
i become closer to the accurate

values Ji.

As an alternative method, we can use a non-adiabatic
process to obtain accurate results. In this case, we fix
the final Hamiltonian, and adjust the scheduling during
the annealing process so that the final quantum state
becomes closer to the exact ground state. Let us consider
the following time-dependent Hamiltonian in VSQS:

H(t) = A(t)Hini +B(t)H̃fin +
∑
i

Ci(t)σ
i
fin. (17)

The last term in Eq. (17) is the navigator Hamiltonian of
GUCC that was used in [23]. Note that in the VSQS set-
ting, one can absorb B(t) into Ci(t) by changing the
boundary condition for Ci(t), as the Pauli words in the
second term and the third term in Eq. (17) are the same.
Here, we treat B(t) and Ci(t) separately for the purpose
of analyzing the contributions of the navigator Hamilto-
nian and the final Hamiltonian. As before, after running
the time-dependent Hamiltonian, the expectation values
of each of the Pauli words 〈σi

fin〉 are measured. Then,
the total energy is calculated by using the accurate co-
efficients E =

∑
i Ji〈σi

fin〉. It is this quantity E that
an optimizer on a classical computer minimizes. This
optimization process works as it is the ground state of
Hfin =

∑
i Jiσ

i
fin that minimizes the function

∑
i Ji〈σi

fin〉.
To demonstrate this method, we consider the hydrogen

molecule. We add Gaussian noise to the coefficients

J̃i = Ji + ξi , (18)

where ξi ∈ N (α, β), with α and β being the mean and
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the standard deviation, respectively. We estimate the en-
ergy using different noise values ξi for both standard ASP
and VSQS. A histogram of obtained energies is shown in
Fig. 12. For both standard ASP and VSQS, the anneal-
ing time is chosen to be long enough to reach chemical
accuracy when the accurate Hamiltonian Hfin is used:
T = 20 for standard ASP and T = 1 for VSQS. Two
distributions representing the control errors are consid-
ered; one has a zero mean N (0, 0.1) and the other has
a non-zero mean N (0.2, 0.2). As shown in Fig. 12, the
obtained energy in standard ASP has a wide range of
distribution in E. This is expected, as standard ASP
generates a ground state of the inaccurate Hamiltonian
H̃fin =

∑
i J̃iσi. On the other hand, in VSQS, the ob-

tained energies always remain within chemical accuracy.
Therefore, we conclude that VSQS has resilience against
control errors.

FIG. 12. Frequency of the obtained energy of H2, with

d = 1.0
◦
A and an inaccurate final Hamiltonian. The split

number and group numbers are chosen to be (S, I, F ) =
(10, 2, 4). The annealing time is chosen to be T = 1 for
VSQS and T = 20 for standard ASP.

VI. CONCLUSION

In this paper, we proposed performing quantum simu-
lations using variationally determined schedule functions.
Our main objective was to shorten the time of individ-
ual runs during iterations of annealing, which is essen-
tial for obtaining accurate results in the absence of error
correction. We conducted numerical simulations with
the intent of investigating several characteristics of the
VSQS algorithm by using the examples of finding ground
states of molecular systems (H2 and P4) and Ising model.
We analyzed the effects and advantages gained by the
introduction of distinct schedule functions for distinct

spins and optimizing the schedule functions variationally.
For computationally simple problems, such as finding the
ground state of a hydrogen molecule, the optimization of
the schedule functions enabled us to shorten the time of
a single annealing run significantly. For more challeng-
ing problems, namely the square configuration of the P4
molecule in which the highest occupied and lowest un-
occupied molecular orbitals become degenerate, the use
of distinct schedule functions for distinct terms is more
important for shortening the annealing time.

We also applied the VSQS algorithm for the triangu-
lar Ising model, which has randomness and frustration.
In this model, we introduced a navigator Hamiltonian
consisting of σxσx couplings. We found that the time-
dependent Hamiltonian becomes non-stoquastic for the
optimal schedule functions.

Furthermore, we demonstrated the VSQS algorithm’s
resilience to control errors. We considered the case where
the final Hamiltonian was inaccurately implemented.
When the quantum state followed the adiabatic path,
then the final state became the ground state of the inac-
curate final Hamiltonian. Therefore, the computational
results provide inaccurate answers for optimization prob-
lems. The VSQS algorithm allows for adjustments to be
made to the schedule functions so that the final state min-
imizes the accurate Hamiltonian instead of the inaccurate
Hamiltonian. By doing so, we successfully generated the
true ground state of a hydrogen molecule.
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Appendix A: Geometry of the P4 molecule

Figure 13 shows the geometry of the P4 molecule. The
internuclear and intermolecular distances are chosen to

be 2
◦
A.

FIG. 13. P4 molecule. The spheres represent hydrogen
atoms.

Appendix B: Standard ASP results for the hydrogen
molecule

The results of running standard ASP for the hydrogen
molecule are shown in Fig. 14. The energy values exhibit
non-monotonic behaviour as a function of the annealing

time T for d = 2.5
◦
A and d = 3.0

◦
A. This is evidence of

coherent oscillation between different energy levels. See,
for instance, [58–61].

FIG. 14. Energy E versus time T for the hydrogen molecule
when using standard ASP
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Greiner, Vladan Vuletić, and Mikhail D. Lukin, “Prob-
ing many-body dynamics on a 51-atom quantum simula-
tor,” arXiv:1707.04344 (2017).

[10] K. Wright, K. M. Beck, S. Debnath, J. M. Amini,
Y. Nam, N. Grzesiak, J. S. Chen, N. C. Pisenti,
M. Chmielewski, C. Collins, K. M. Hudek, J. Mizrahi,
J. D. Wong-Campos, S. Allen, J. Apisdorf, P. Solomon,
M. Williams, A. M. Ducore, A. Blinov, S. M. Kreike-
meier, V. Chaplin, M. Keesan, C. Monroe, and J. Kim,
“Benchmarking an 11-qubit quantum computer,” arXiv
e-prints , arXiv:1903.08181 (2019), arXiv:1903.08181
[quant-ph].

[11] John Preskill, “Quantum Computing in the NISQ era
and beyond,” Quantum 2, 79 (2018).

[12] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-
Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-
Guzik, and Jeremy L. O’Brien, “A variational eigenvalue
solver on a photonic quantum processor,” Nature Com-
munications 5, 4213 EP – (2014).

http://dx.doi.org/10.1038/nature13171
http://arxiv.org/abs/1402.4848
http://arxiv.org/abs/1402.4848
http://arXiv.org/abs/1707.04344
http://arxiv.org/abs/1903.08181
http://arxiv.org/abs/1903.08181
http://dx.doi.org/ 10.22331/q-2018-08-06-79
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1038/ncomms5213


11

[13] M. H. Yung, J. Casanova, A. Mezzacapo, J. McClean,
L. Lamata, A. Aspuru-Guzik, and E. Solano, “From
transistor to trapped-ion computers for quantum chem-
istry,” Scientific Reports 4, 3589 EP – (2014).

[14] Jarrod R McClean, Jonathan Romero, Ryan Babbush,
and Alan Aspuru-Guzik, “The theory of variational
hybrid quantum-classical algorithms,” New Journal of
Physics 18, 023023 (2016).

[15] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme,
Maika Takita, Markus Brink, Jerry M. Chow, and
Jay M. Gambetta, “Hardware-efficient variational quan-
tum eigensolver for small molecules and quantum mag-
nets,” (2017), 10.1038/nature23879, arXiv:1704.05018.

[16] Pierre-Luc Dallaire-Demers, Jonathan Romero, Libor
Veis, Sukin Sim, and Alán Aspuru-Guzik, “Low-depth
circuit ansatz for preparing correlated fermionic states on
a quantum computer,” arXiv e-prints , arXiv:1801.01053
(2018), arXiv:1801.01053 [quant-ph].

[17] Omar Shehab, Isaac H. Kim, Nhung H. Nguyen, Kevin
Land sman, Cinthia H. Alderete, Daiwei Zhu, C. Monroe,
and Norbert M. Linke, “Noise reduction using past causal
cones in variational quantum algorithms,” arXiv e-prints
, arXiv:1906.00476 (2019), arXiv:1906.00476 [quant-ph].

[18] Tameem Albash and Daniel A. Lidar, “Decoherence
in adiabatic quantum computation,” Phys. Rev. A 91,
062320– (2015).

[19] Andrew M. Childs, Edward Farhi, and John Preskill,
“Robustness of adiabatic quantum computation,” Phys.
Rev. A 65, 012322 (2001).

[20] M. S. Sarandy and D. A. Lidar, “Adiabatic quantum
computation in open systems,” Phys. Rev. Lett. 95,
250503– (2005).

[21] Johan Aberg, David Kult, and Erik Sjöqvist, “Quantum
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