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Abstract
In portfolio optimization, many weight allocation strategies result in long-only positions. We show how it is possible to
formulate and solve an optimization problem that assigns a direction (long or short) to each weight allocation, such that
the variance is minimized or maximized. This optimization problem can then be solved by many solvers, including
D-Wave Systems’ quantum annealer, the Fujitsu Digital Annealer, and others. We present backtested results for three
datasets solved using a tabu solver run on a CPU. Our results suggest that by utilizing intelligent shorting, this method is
able to reduce the volatility of long-only strategies, leading to shorter maximum drawdowns and higher Sharpe ratios,
albeit with a higher turnover. We also discuss possible extensions of this model such that it attempts to achieve market
neutrality, sector neutrality, or takes into account a shorting aversion.
Keywords: risk parity, portfolio optimization, quantum annealing, digital annealing

1 Introduction

Risk parity is an approach to portfolio optimization that allocates funds such that each asset is weighted inversely
proportional to its risk. Often, this is used in long-only portfolios. If we move to a style of investing in which one can sell
short financial instruments (such as stocks or futures), we can consider a weight as representing the amount of money
that is set aside as collateral for a given position, rather than money that is exchanged for an asset. If we utilize a
measure of risk that is not related to the direction of the position held (long/short), then risk parity does not fully
determine the portfolio composition, since a short position carries the same risk as a long position. This means that for a
portfolio of n assets, there are 2n potential portfolios all of which have equal risk assigned to the constituents, thereby
opening the door to a strategy that would choose a single portfolio from among those potential portfolios.
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2 Formulation

If we define a long-only weight vector w, that is,
∑

i wi = 1 and wi ≥ 0 ∀i, then each position in a long/short version of
the associated portfolio is either long +wi or short −wi. This allows us to define an optimization problem that selects
the direction of the positions such that they minimize or maximize an objective function, such as the variance of the
returns or value at risk (VaR). Variance makes for a tangible problem that is quadratic in nature.

To define the problem mathematically, let us define a sign vector s, such that if si = +1 then position i is long, and if
si = −1 then position i short. We can then write the signed weights as sTw. To define the optimization problem of
minimizing (and similarly for maximizing) the variance of the portfolio, we define a diagonal matrixW which has w on
the diagonal, and then solve

argmins
{
sTWTΣWs

}
, (1)

where Σ is the covariance matrix. D-Wave Systems’ quantum annealer and the Fujitsu Digital Annealer both solve an
Ising problem, defined as

argmins
{
sTJs+ hT s

}
, (2)

where J is a matrix of couplers, h is a vector of local biases, and s ∈ {−1,+1}n. We can solve the above optimization
problem (1) using a quantum or digital annealer by identifying J asWTΣW but with the diagonal set to zero
(qubits/variables are not coupled to themselves), which is equivalent to dropping the constant

∑
i w

2
i , which does not

change the result of the optimization problem, and setting h = 0.

Note that this optimization problem has the symmetry s → −s. This means that every solution is guaranteed to be
doubly degenerate, with those two solutions differing only by a global minus sign. In this research, we chose which of
the degenerate solutions to use based on which of them gives a weights vector that is closer (via an L1 norm) to the
original weights. The intuition behind doing so is that we expect it would tend to give us lower turnover while giving the
same volatility, resulting in better performance. We note that problems with s → −s symmetry tend to be harder than
problems without this symmetry.

To gain some intuition on this optimization problem, let us consider some simple theoretical edge cases. For the case of
two assets, problem (1) reduces to

argmins1,s2 {2w1w2Σ12s1s2, } , (3)

where we use the fact that s2i = 1 and ignore the constant w2
1 +w2

2 . Let us consider the case of two identical assets, that
is, two assets that have the same variance and perfect correlation. If the assets are identical, our positions should be
identical, so w1 = w2 = 1/2, and to minimize the objective function, we must set s1 = −s2, meaning that we buy one of
the assets and sell the other short. The intuition behind doing so is that for assets that are highly correlated, one can
minimize the volatility by ‘‘cancelling’’ the volatility of the long asset against the volatility of the short asset. In contrast,
if the objective is to maximize the volatility, the result is s1 = s2 = ±1, meaning that we buy both assets or sell both
assets short. For two assets that have the same volatility, but are perfectly anti-correlated, the results are reversed.

If the asset universe consists of assets that are all positively correlated, then we can generalize the first example to
understand what will happen. In the maximization version we should set all the signs of the weights to be equal, so as to
maximize the quadratic product of the spins and the positive coefficients (from the positive covariance). A physicist
would call such a problem a ‘‘ferromagnetic’’ problem, the solution to which is trivial, and yields weights that are
identical to the weights of the underlying weight allocation method. In contrast, in the minimization version we must
carefully decide which of the signs of the weights should be positive and which should be negative, a non-trivial
problem. If, on the other hand, the asset universe consists of assets that are all negatively correlated, the situation is
reversed—the minimization version gives the trivial solution, and the maximization version is a non-trivial problem.

3 Results

To compare the performance of each strategy, we performed a backtest on three sets of assets: CTA, DJIA, and SPDR.
The first is a typical portfolio for a commodity trading advisor (CTA), consisting of 38 diverse futures contracts,
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Figure 1: Results for the CTA index: portfolio values for IVP (inverse variance parity) (a) and EW (equal weighting) (b).
The minimization scheme is labelled by ‘‘MINRP’’ and the maximization scheme is labelled by ‘‘MAXRP’’.

including stocks and bonds from different countries, as well as commodities such as oil, wheat, and gold. The DJIA is the
Dow Jones Industrial Average, consisting of 30 large-cap US stocks. SPDR consists of the nine S&P500 sector ETFs.

For the purposes of calculating the covariance, we used a rolling window of three months, and the portfolios were
re-balanced on the first trading day of the month. In order to collect statistical data, we used bootstrapping with 25
samples, which also included the historical prices as one of the samples. To perform the bootstrapping, we numbered
each date with an index, and sampled with replacement from the set of indices to obtain a sequence of indices. We then
used the prices for all assets at each respective index as the price sample. The optimization problems were solved using
a multi-start tabu 1-opt search with 100 starts, as a stand-in for a quantum or digital annealer.

For each weight allocation method, it is possible to apply the minimization or maximization scheme described by (1).
These are labelled with the suffix ‘‘MINRP’’ and ‘‘MAXRP’’ (respectively). The results for each index for equal weighting
(EW) and inverse variance parity (IVP) are presented in Figs. 1–3. In EW, a weight 1/n is assigned to all n assets, and in
IVP, the weights are proportional to the inverse of the variance of each asset over the rolling window.

Results for all the algorithms tested are shown in Table 1, based on a backtest on the DJIA. The table includes results for
the methods described above (EW and IVP) as well as: ‘‘MV’’—minimum variance; ‘‘HRP’’—hierarchical risk parity; and
‘‘QHRP’’—quantum hierarchical risk parity. The metrics are described in the table’s caption.

4 Discussion

From the portfolio value results in Figs. 1–3, it is clear that MINRP has a remarkable ability to reduce the volatility of IVP
and EW (at least for these methods and datasets), albeit at the cost of lower returns in some cases. In particular, the
returns for IVP_MINRP are unimpressive for the CTA and SPDR datasets. The impressive performance of EW_MINRP
on the CTA and DJIA datasets is surprising; additional investigation would be required to understand why it works so
well, and why it does not work as well for SPDR.

As noted above, when all correlations are positive, MAXRP produces long-only results that are equal to the underlying
method. Indeed, one can see this for the DJIA and SPDR. In contrast, CTA includes some anti-correlated assets, and
there MAXRP indeed diverges from the results of the underlying methods. In the case of IVP_MAXRP, it unfortunately
results in a very large standard deviation of the portfolio values. Table 1 confirms that for a wider range of methods,
MINRP is able to reduce the volatility and maximum drawdown substantially, and achieve the highest Sharpe ratio seen
in this experiment. We remark that although the turnover when using MINRP tends to be large, it is comparable to the
turnover of MV when used alone.
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Figure 2: Results for the DJIA index: portfolio values for IVP (a) and EW (b). Labels are as in Fig. 1.

(a) (b)

Figure 3: Results for the SPDR index: portfolio values for IVP (a) and EW (b). Labels are as in Fig. 1.
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Volatility [%] Mean returns [%] Sharpe ratio Max DD [%] Turnover
Method Mean STD Mean STD Mean STD Mean STD Mean STD
IVP 16.80 0.05 7.77 0.28 0.46 0.02 45.23 0.46 0.14 0.01
IVP_MAXRP 16.77 0.05 7.64 0.30 0.46 0.02 45.24 0.45 0.14 0.01
IVP_MINRP 3.18 0.10 3.79 0.93 1.19 0.29 5.22 1.21 0.54 0.01
EW 20.78 0.00 6.75 0.00 0.32 0.00 59.75 0.00 0.00 0.00
EW_MAXRP 20.72 0.03 6.60 0.13 0.32 0.01 59.70 0.16 0.01 0.00
EW_MINRP 4.42 0.18 6.78 1.19 1.53 0.27 5.11 1.34 0.48 0.01
MV 15.52 0.28 8.26 1.27 0.53 0.08 34.80 3.88 0.56 0.03
MV_MAXRP 15.03 0.31 7.47 1.80 0.50 0.12 34.58 3.75 0.59 0.04
MV_MINRP 9.19 0.49 1.99 1.82 0.22 0.20 25.26 4.54 0.74 0.03
HRP 17.04 0.27 6.84 0.87 0.40 0.06 51.09 2.01 0.36 0.01
HRP_MAXRP 16.96 0.27 6.39 0.79 0.38 0.05 50.94 2.04 0.37 0.02
HRP_MINRP 4.52 0.17 4.12 1.36 0.91 0.30 7.68 2.19 0.65 0.01
QHRP 15.24 0.28 6.56 1.44 0.43 0.10 42.76 5.42 0.59 0.03
QHRP_MAXRP 15.11 0.28 6.03 1.67 0.40 0.11 42.60 5.54 0.61 0.03
QHRP_MINRP 7.51 0.32 2.87 2.09 0.38 0.28 18.49 5.70 0.76 0.03

Table 1: Metrics from the backtesting of various portfolio allocationmethods on the DJIA with a three-month window and
monthly rebalancing. The means and standard deviations (STD) were taken over 25 bootstrapped samples, as explained
in the main text. The metrics are: ‘‘Volatility’’—the standard deviation of the returns; ‘‘Mean returns’’; ‘‘Sharpe ratio’’
(annualized); ‘‘Max DD’’—the maximum drawdown; and ‘‘Turnover’’—the fraction of the portfolio that shifted at each
rebalancing step. The names of the methods are defined in the text. The backtest period was chosen arbitrarily as being
from January, 2005 to May, 2016.

5 Possible Extensions

There are multiple ways in which the problem in (1) could be extended. For example, consider market neutrality, in which
an investor seeks to maintain a neutral exposure to a particular factor, such as maintaining a roughly equal investment in
long and short positions. One could incorporate a market neutrality bias into the optimization problem, such that
solutions are preferred if they are closer to market neutrality. This could be achieved by adding a penalty term
α (

∑
i wisi)

2, where α > 0 controls the relative strength of the market neutrality term versus the variance term. The
new term is zero for a market-neutral allocation, and positive otherwise. One could also impose sector neutrality, which
would involve adding a similar term as above for each sector, with the sum running over only the assets in that sector.

Another possibility is to take into account a shorting aversion. Having noticed that the total weight allocated to short
positions can be written as 1

2

∑
i wi(1− si), we can add a proportional term in order to penalize large total shorting

fractions. Note that the turnover, defined as the fraction of the portfolio that is shifted, can be written as the very same
term, yielding the result that imposing a bias against high turnover is the same as imposing a bias against short positions.
The reason is that long positions do not incur any turnover (under the assumption that the underlying weights are all
positive). Also note that this term is linear in s, such that adding it to the model would break the s → −s symmetry of
the original model (and give a non-zero h).

6 Conclusions

We have presented a method for lowering the volatility of long-only portfolios by converting some positions to short
sales. The results suggest that this might be an effective way of reducing the volatility and maximum drawdown for a
range of portfolio allocation methods, albeit at the cost of a higher turnover. Note also that short positions are not
permitted in some assets. Further study would be necessary to determine how transaction costs, slippage, and leverage
affect these results. We have formulated the problem for solving on a quantum annealer, and expect to take advantage
of such machines as they become larger and more powerful.
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