
Simulated
Annealing
via Quantum
Annealing
A General Framework for Continuous
Optimization

White Paper

Simulated Annealing
via Quantum Annealing

A General Framework for Continuous Optimization
Pooya Ronagh

Abstract
In the summer of 2013, 1QBit developed a general method for solving continuous optimization problems. This method
works under the assumption of the existence of a computation model with a Turing reduction of problems to either
quadratic unconstrained binary optimization (QUBO) problems or to an Ising spin problem. We assume the existence of
a Turing machine with an oracle that answers the result of an optimization of one of the above families of problems in
one clock of the machine. This investigation is motivated by the assumption that the processor produced by D-Wave
Systems, Inc. is a successful realization of such an oracle.

Our method is inspired by different types of simulated annealing and genetic algorithms. Below we explain a general
framework for tackling optimization problems using this new method. Similar to the case of simulated annealing, there
are several ways of implementing different submodules of our algorithm. Our implementation provides several famous
such submodules and can receive them as user inputs. These can be chosen depending on the optimization problem at
hand and convenience to the user.

This paper presents an application of this method to a mixed-integer optimization problem. This will demonstrate an
interesting method of representing a cardinality-constrained optimization problem using analytic expressions, and the
ability of the method to solve such mixed-integer optimization problems.
Keywords: random search algorithms, stochastic optimization methods, simulated annealing, adiabatic quantum computing, D-Wave
System

1 Introduction
In this section we give a brief introduction to the theory of simulated annealing. An extensive overview and survey of
results can be found in [8].

Simulated annealing is a general optimization technique that has been used for the past 40 years in various applications.
Originally [7], it was thought of as a method of solving combinatorial optimization problems (e.g., Travelling Salesperson
and VLSI design), where the objective function is defined on a domain with discrete topology. Mathematical models of

1 ©2016 1QB Information Technologies

this algorithm are essentially Markov chain stochastic processes, and prove probabilistic convergence results of the
algorithm to the global optimal answers of the optimization problem under certain assumptions (c.f., for example, [4]).

Various key features of the algorithm, for instance the definition of some type of neighbourhood structure (e.g., a
topology, a metric, or an adjacency graph) on the feasible region, a cooling schedule, generation of points, acceptance
criteria, population sizes, etc. are general concepts that need to be selected accordingly for the specific application one
is tackling. The performance of the algorithm depends heavily on a wise selection of such features. Theoretical results
(such as proof of asymptotic convergence) also depend on the specific selection of these features. [11, 4, 1, 9]

Later on (in [12] for the first time), the concept of simulated annealing was applied and benchmarked for continuous
optimization problems. The continuous method shows promising results in several cases of non-convex and
mixed-integer optimization problems. Our proposal is a variation of the continuous simulated annealing technique
suggested for these problem types. Our algorithm intrinsically works with populations of points rather than a single
random process as it takes advantage of the QUBO/Ising solver oracle. An advantage to the D-Wave system is that it
can produce a spectrum of optimal and suboptimal answers to a QUBO/Ising optimization problem, rather than merely
the lowest energy point. We hence use ideas of population-oriented simulated annealing algorithms to most efficiently
benefit from the spectrum of received answers. Our claim is that this algorithm shows an improvement in computation
time.

2 A non-technical overview of simulated annealing
Simulated annealing is a search method that explores a search space randomly in order to find a desired object. One can
think of this technique as analogous to the way molecules in a metal cool down into a crystalline structure. At higher
temperatures the molecules are in excited states and are in unorganized positions with respect to each other. As the
metal is slowly annealed the molecules start to align themselves in a low-energy arrangement, one we call crystalline.

One can think of the algorithm as an agent searching the space. By “bouncing” from one location to another, the agent
finds the point with the lowest altitude in their universe. The trajectory of such an agent is called a random process. If the
agent has a low memory span, it will “forget” the path it took before reaching its current location. The next bounce
depends only on the current placement, not previous bounces. In mathematics, such a random process is called a
Markov chain. The algorithm might have several such agents that communicate the information they find about the
search space with each other. In this case, the overall algorithm bounces from one population of locations to another.

The key point about simulated annealing is the notion of temperature. At the beginning of their bouncing, the agents are
more excited. As a result, they occasionally bounce uphill rather than going downhill. This may seem like a bad strategy
to find a minimum, but it actually helps agents to avoid settling in local small valleys, and reach deeper valleys. Bouncing
uphill happens according to an acceptance criteria. The acceptance criteria is satisfied if a certain random number is in a
given range. As the temperature decays according to a temperature schedule or cooling schedule the agents lose their
respective energy and the bounces become smaller. In other words, the acceptance criteria becomes harder to satisfy
when the world becomes frozen.

Our algorithm is a very specific modification of typical simulated annealing algorithms. In our algorithm, the agents
consider jumping to an exponential number of new points. This exponential collection of points is chosen carefully so
that the altitude of each point can be compared using the D-Wave system and ranked. The agents then decide to
bounce to a new altitude according to both their level of excitation and this ranking.

An underlying hypothesis is that this comparison of an exponential number of altitudes can be performed in less than
exponential time using the D-Wave system. One of the biggest speed bottlenecks of simulated annealing algorithms is
the evaluation of these altitudes, which we are hereby minimizing to an exponentially low fraction of time. Therefore,
the claim is that our algorithm will show significant improvement in speed compared with other simulated annealing
procedures when the dimension of the search space is high.

2 ©2016 1QB Information Technologies

3 The concept of simulated annealing
In this section, we list several components of a simulated annealing algorithm. LetD be a set and y = f(x) a real-valued
function onD. The most general form of the optimization problem we want to solve can be simply phrased as

minimize y = f(x) x ∈ D , (1)
subject to x ∈ F. (2)

The function f(x) is called the objective function and the setD is called the domain of definition. The subset F ⊆ D is
called the feasible region. A simulated annealing procedure searches among the points x ∈ D in order to find an optimal
solution x∗ ∈ F for the optimization problem. Depending on the specific problem, the algorithm might be searching
only points that are included in F or more generally be exploring all ofD (rejecting points inD r F by means of penalty
functions, etc.). It is also possible that the two sets F andD coincide. We blur this distinction and use a third term,
search space, and abuse the notationD for it when the discussion applies to either or both of F andD.

It is beneficial for a simulated annealing algorithm if the problem at hand has some further structure:

3.1 Neighbourhood structure
We needD to have some neighbourhood structure, denoted byN , that gives us a gauge of points being close or far from
each other. Some examples of such structures are topologies and metrics, and in caseD has the structure of a vector
space,N can be a norm or a semi-norm onD. For theoretical analysis of a simulated annealing algorithm one needsD
to be equipped with a measure. We may also take advantage of f respectingN . For instance, ifN is a topology, then we
can require for f(x) to be continuous onD. IfN is a metric, we may require f(x) to be continuous or differentiable to
some order onD.

Example 1. In fact, most practical optimization problems in optimization theory are stated more explicitly as

minimize y = f(x) x ∈ RN , (3)
subject to gi(x) = ai for all i = 1, · · · , r,

hi(x) ≤ bi for all i = 1, · · · , s.

In this exampleD = RN and y = f(x) is a function ofN real variables. The feasible region F is a closed manifold
(possibly with a non-empty boundary) embedded in RN cut out by the equality and inequality constraints above, andN
is the induced metric. The objective function and the equality and inequality constraints may be continuous, differential,
or smooth. The constraints can also impose mixed-integer constraints on the feasible region (in particular the manifold
F does not need to be connected).

3.2 Temperature schedule
A simulated annealing procedure depends on a sequence of positive real parameters {τt}∞t=0 called temperature (a.k.a.
control parameter in many references) that is converging to zero through iteration of the algorithm on the index t.
Physics’ interpretation of this convergence is that the system is approaching a “frozen” state with zero entropy, in which
case all random processes involved in the algorithm become trivial. At each temperature τt, the algorithm simulates a
random process (usually a discrete-time Markov chain) onD or in case of multi-agent systems on a finite cartesian
productD × · · · ×D (c.f. §3.6). In practice these Markov chains are of finite length `τt . The initial distribution of the
Markov chain depends on the final state of the algorithm at previous temperature τt−1. A temperature schedule
consists of,

1. an initial value τ0 for the temperature schedule;

2. a recursive expression for generating a next temperature, τt, from previous ones (τ0, · · · , τt−1) such that
limt→∞ τt = 0;

3. a length `τt , for the Markov chain onD generated at a given temperature τt;

4. a stopping criterion for terminating the truncating of the sequence {τt}t in finite length, in which case the
algorithm terminates.

3 ©2016 1QB Information Technologies

3.3 Transition probability
Given any point x ∈ D, at a given temperature τ = τt, we need a probability density function µ = µτ

x onD. This
distribution will eventually define the transition kernel of the Markov chain described above from point x to point y at
temperature τ of the algorithm:

Kτ (x, y) = ατ (x, y)µτ
x(y) .

One may think of µτ
x as a means of generating a new point y from a given point x and therefore we use the term

generating distribution centred at x ∈ D for it. For theoretical considerations we need µ to be a continuous function
µτ : D ×D → R (for instance, with respect to the Lebesgue measure onD). And we assume µτ

x := µτ (x, .) to be a
probability density function onD and µτ (., y) to be measurable.

The neighbourhood structure onD often makes its presence in the definition of µτ
x.

Example 2. LetD = Rn. We may define µτ
x to be the n-dimensional Gaussian distribution with mean x and variance τ√

2

as in the case of classical simulated annealing (a.k.a. Boltzmann machines) [11]. Notice that since limt τt = 0, then these
transition probabilities approach Dirac delta functions.

The important factor for definition of the transition kernel is that the Markov chain defined by it needs to be irreducible.
When α(., .) is the Boltzmann acceptance criteria as explained below, any of the following conditions is sufficient for the
resulting Markov chain to be irreducible:

1. µ : D ×D → R is positive; or,

2. For every ε > 0, there exists δ > 0 such that µ(x, y) > ε is |x− y| < δ.

Example 3. Let Bε(x) denote the ball of radius ε centred at x:

Bε(x) = {y ∈ D : dist(x, y) ≤ ε}.

IfD is a bounded open subset of Rn with boundary ∂D = D̄ rD, we may let r = dist(x, ∂D) and define the transition
probability to be the truncated Gaussian distribution with mean x in Br. IfD is a compact subset of Rn, we may use the
same distribution as above for interior points x ∈ D◦ and of x ∈ ∂D we may set µτ

x to be the uniform distribution onD◦.

3.4 Acceptance criteria
Given a temperature τ = τt, and two points x1, x2 ∈ D, the acceptance criteria ατ (x1, x2), determines the probability at
which the point x2 is accepted as the successor of x1 in any of the random processes taking place in the algorithm at
temperature τ . In essentially all implementations of simulated annealing, this acceptance criterion is inspired by physics
to resemble the Boltzmann distribution:

Example 4. We recall the Boltzmann distribution (a.k.a. the Gibbs measure) in statistical mechanics. Given a continuous
function f : D → R and a free parameter β, this distribution is

p(x) =
1

Z(β)
e−βf(x) ,

where Z(β) =
∫
D
p(x) is uniquely determined by f and β to be the normalizing constant (a.k.a. partition function) that

turns the above expression into a probability density function.[6]

Given points x1 and x2 inD at temperature τ , we define the probability of acceptance of x2 as successor of x1 to be,

ατ (x1, x2) =

{
1 if f(x2) ≤ f(x1) ,

e−(f(x2)−f(x1))/τ µτ (x2,x1)
µτ (x1,x2)

otherwise.

The core theoretical proposition of simulated annealing is that

Theorem 1. Any irreducible Markov chain defined with the following kernel

Kτ (x, y) = α(x, y)µτ (x, y) + (1−
∫
D

α(x, z)µτ (x, z)dz)δ(x− y) ,

4 ©2016 1QB Information Technologies

has stationary distribution p(x). Here δ is the Dirac delta function.

Example 5. In this case the distribution of finding a random walk onD at temperature τ , to be at state x approaches the
Boltzmann distribution:

lim
k→∞

P (X = x) =
1

Z
e−

f(x)/τ .

LetX be a Markov chain onD with transition kernel

P (Xk = xk|Xk−1 = xk−1) = Kτ (xk−1, xk) .

The above acceptance criteria induces a new random process Y , with the following transition matrix:

P (Yk = yk|Yk−1 = yk−1) =

{
Kτ (xk−1, xk)A

τ (xk−1, xk) if xk 6= xk−1 ,
1−

∑
y 6=xk−1

Kτ (xk−1, y)A
τ (xk−1, y) otherwise.

3.5 The algorithm
Simulated annealing is the following procedure:

inputs objective_function , temperature_schedule
initialize temperature_schedule
while stopping criterion not met do

initialize temperature τ = τ0
initialize random processXτ = (Xτ

k)
∞
k=0 onD and let Y τ

0 = Xτ
0

while length of (Xτ
k) is less than `τ do

choose Y τ
k+1 from a distribution µτ

Xk

if acceptance criterion is met according to Aτ (Xτ
k , Y

τ
k+1) then

Xτ
k+1 ← Y τ

k+1

else
Xτ

k+1 ← Xτ
k

end if
end while
update temperature τ

end while
return the minimum-valued point in the set {Y τ

k }τ,k

Mathematical analysis of a simulated annealing algorithm is generally a hard theoretical problem and even harder in the
continuous case. For some nice convergence results of this sort we refer the reader to [1].

3.6 Multi-agent simulated annealing
One immediate generalization of the above algorithm is to let the algorithm simulate more than a single random process
at each temperature. In this case, the algorithm has yet another component called the population function, π = πτ ,
which is a function of temperature τ . At given temperature τ = τk, the random processXτ now is a tuple of πτ random
processesXτ,1, · · · , Xτ,πτ onD, which in theory may be dependent or independent from each other. The distributions
µτ and acceptance criteria Aτ are now more generally tuples of such functions as:

µ = µτ
X1

k,··· ,X
π
k
, and Aτ ({Xτ

k }k=1,··· ,π, Y
τ
k+1) .

4 Inputs of the software
4.1 Conventional inputs
Optimization problem. The user specifies an optimization problem in the sense of 3. Such an object is an instance of a
type which we denote as objective_function. More specifications of this object are provided in the documentation of
the software. In particular, an instance of this input consists of an objective function, together with equality and
inequality constraints.

5 ©2016 1QB Information Technologies

Temperature schedule. Our software is able to operate with a user-defined temperature schedule. Users can also
choose a temperature schedule from the library of various well known temperature schedules we have implemented
(e.g., that of classical simulated annealing, fast simulated annealing, and very fast simulated re-annealing).

Distributions centred at each point. These functions can also be defined by the user according to the specific geometry
of the optimization problem. Our default method is explained in §5.1.

Population. In the sense of §3.6, users may specify the population function for agents searching the feasible region of
the optimization problem.

Local search method. After the simulated annealing algorithm terminates, we do a local search in the neighbourhood of
the best solution found, in order to find the closest local minimum of the function. This can be done using any of the
algorithms we have implemented (e.g., Monte Carlo, steepest descent, or conjugate gradient method). These
algorithms require a specified precision that is also set as a user input.

4.2 New inputs
Unlike the above components, the core idea of our algorithm is a very specific definition of random processesXτ and
distributions µτ

X that makes exploitation of the power of the oracle possible for us. This will become clearer as we
explain our algorithm in further detail below.

Population of candidates. In each round of use of the oracle we receive a spectrum of optimal and suboptimal points in
the neighbourhood of a point x ∈ D. These points are treated as candidates for the next state of the Markov chain. This
user-defined integer will determine the maximum size of the set of minimum-valued points that will be taken into
consideration as candidates of transition from x to the next state.

Selection scheme. This is a generalization of acceptance criteria in the conventional simulated annealing algorithms. As
explained above, our algorithm creates a population of candidate points in a neighbourhood of the current state of the
Markov chain. The process of accepting a next proposed state xk from the current xk−1 is now replaced by a selection
scheme of xk from a set of candidate points as a successor of xk−1.

Users can select any of our built-in selection schemes (i.e., Boltzmann tournament scheme, Boltzmann scheme, and
Cauchy scheme [3]) or define their favourite ones.

Before we introduce the last input parameter, recall that our software is a general-purpose simulated annealing
optimizer that uses an oracle to solve QUBO or Ising model problems, in one instance being the D-Wave system. Let v
be the largest number of variables in the problems we can solve with the oracle.

Search dimension. This parameter is a positive integer d, satisfying 1 ≤ d ≤ min{v, n} where n is the dimension of the
feasible region F . For example, if the equality constraints of 3 are all linearly independent, then the dimension of F is
bounded by n ≤ N − r and consequently d ≤ min{v,N − r}. The role of this parameter will become clear in following
sections. The performance of our algorithm heavily relies on choosing as large a parameter as possible.

5 Auxiliary components of the main algorithm
5.1 Approximately uniform distribution in a domain
We have implemented methods for generating random points in a given subset S of RN (which can be the domain or the
feasible region, for instance). The goal is for the distribution of such random points to be as close to the uniform
distribution on S as possible. The effectiveness of a given method depends on the nature of the optimization problem at
hand and the structure of S. Here are a few instances:

Example 6 (Standard euclidean box). Suppose a1, · · · , an and b1, · · · , bn are real numbers such that ai ≤ bi for all
i = 1, · · · , n. Then for S = [a1, b1]× · · · × [an, bn] ⊆ Rn, we select ci from the uniform distribution on the interval [ai, bi].
Then the point (c1, · · · , cn) has uniform distribution on S.

Example 7 (Standard Euclidean simplex). Suppose S is the set of all points (x1, · · · , xn+1) ∈ Rn+1 satisfying
∑

i xi = 1.

6 ©2016 1QB Information Technologies

We use the method of Rubinstein and Melamed, for instance, to create a uniform distribution on S.[10]

Example 8 (Polytopes). If S is a polytope, we may use a hit-and-run Markov chain that starts from the Chebychev
centre of the polytope and makes a random walk on the polytope to generate a random point within it in an
approximately uniform way. We assign that as the centre of a hypercube. We then create an invertible matrix A
uniformly randomly, that serves as the change of basis that determines the hypercube uniquely.[5]

The uniform distribution generated is used mainly as the initial distribution of Markov chains in simulated annealing. Its
other applications are in creating generating distributions in the neighborhood of a point or when the generating
distribution needs to be uniform (for example when the current state of the Markov chain is close to a boundary of the
domain, c.f. example 3).

5.2 Transition to neighbour points
Given a point c ∈ Rn (generated as explained in the previous section) we now construct an affine transformation
ϕ(x) = Ax+ b where A is a full-rankN × dmatrix A and a columnN-vector b. The affine transformation
ϕ(x) : Rd → RN will be such that either,

1. ϕ(0) = c and ϕ(δ) is a point in S for all δ ∈ {−1, 1}×d; or,

2. ϕ(1/2, · · · , 1/2) = c and ϕ(δ) is a point in S for all δ ∈ {0, 1}×d.

Geometrically, this provides us with a hypercube of dimension d, with centre c centred at c and contained in a polytope
contained in S (in practical examples such that 3, S and the feasible region coincide).

Given the generating distribution as in §3.3, we pick v1, · · · , vd in neighbourhood of the current state x ∈ D according
to it. The vectors bi = vi − x, form a family {b1, · · · , bd} and we require them to be linearly independent. These vectors
produce anN × dmatrixM .

We may need to dilate each vector bi according to a scalar ri. The goal is that after dilation all binary points
δ ∈ {−1, 1}×d satisfy:

Mδ + c ∈ S , for all δ ∈ {−1, 1}×d .

It is easy to prove that construction of such a matrixM can be performed in time O(dN). The final result is that from a
stochastically selected point c ∈ S, we now have the choice to transition to 2d points in neighbourhood of c contained in
S.

The matrixM above and centre point c, uniquely determine such pairs (A, b) of affine transformations from Rd to RN

satisfying the above conditions. In fact:

1. in the first case, we let A = M and b = c; and

2. in the second case, we set A = 1/2M and b = c+ 1/2M 1, where 1 is the columnN-vector of ones.

Example 9. Suppose S is the feasible region of the optimization problem 3 with linear constraints. This means that in
addition to needing the hypercube to stay inside a polytope (the one cut out by the inequality constraints), the
hypercube needs to reside in an affine hyperplane in RN (the one cut out by the equality constraints). In this case, we
select b1, · · · , bd in the kernel of the system of linear equalities. In case of the example in section 7 we also use a heuristic
in choosing these vectors in a way such that the random processes do not converge to points on the boundaries of S.

5.3 Local polynomial approximation of objective function
Let f be the objective function y = f(x) defined on the set S and c ∈ S be a given point. Our goal is to approximate f
with a polynomial in some neighbourhood of c; we will denote the result of this procedure as Pf,c(x) for later reference.
We provide various ways of performing this that can be selected by a user.

The first obvious way is Taylor approximation, Pf,c = Tf,c(x), of f(x) around centre c of the desired degree. The degree
is chosen by the software as a function of modularity of the objective function, or it can be user-defined. However,
Taylor approximations of high-degree are usually hard to compute, but in case the objective function has an analytic
expression, we will need to find derivatives of it only once symbolically, and whenever a point c ∈ S is given we

7 ©2016 1QB Information Technologies

substitute c.

Other options include approximation using Legendre polynomials, Chebyshev polynomials, interpolation, and least
square method.

5.4 Comparison of value of the neighbour points
Let g(δ) = Pf,c(Aδ + b) where Pf,c is the polynomial generated in §5.3 and (A, b) is the affine transformation generated
in §5.2. Thus, either:

• g(δ) is a polynomial in several spin variables (i.e. δ ∈ {±1}×n) and all points Aδ + b are in S; or,

• g(δ) is a function in boolean variables (i.e. δ ∈ {0, 1}×n) and all points Aδ + b are in S.

The function g is now representative of an unconstrained polynomial optimization problem in variables {−1, 1} or in
boolean variables {0, 1}. We use the fact that every such optimization problem can be reduced to one in which the
objective function is quadratic (but has auxiliary variables). This is done using a built-in reduction algorithm or can be
user-defined.

We can now assume that the function g is representative of an unconstrained Ising spin model problem in case (1) or a
quadratic unconstrained binary optimization problem (QUBO) in case (2). We use our oracle to solve the problem of
optimization of g on a set of all binary points. The result is then interpreted by reversing the affine transformation above
to a population P of candidate points. (In case of multi-agent systems in the sense of §3.6 the candidate population is a
union of such sets P = ∪πi=1Pi.) We then generate our next state (or states, in case of multi-agent systems) from P
according to the selection scheme explained in §4.2.

6 Main algorithm
Our main algorithm can be sketched using the following pseudo-code:
inputs objective_function, temperature_schedule
initialize temperature_schedule
while stopping criterion not met do

initialize temperature τ = τ0
initialize random processXτ = (Xτ

k)
∞
k=0 as a tuple of πτ , Markov chains

onD and let Y τ
0 = Xτ

0 by random generation of points as in §5.1
while length of (Xτ

k) is less than `τ do
determine πτ × 2d neighbour points according to §5.2
generate πτ optimization problems in variables {−1, 1} and {0, 1} as in §5.4
reduce these optimization problems to QUBOs according to §5.4
solve these problems via oracle, and receive a list of (sub)-optimal solutions
choose (Xτ

k+1) according to selection scheme §4.2
end while
update temperature τ according to temperature schedule §4.1

end while
return the minimum-valued point in the set {Y τ

k }τ,k

7 Case study: Cardinality constrained problems
Given a real vector x = (x1, · · · , xn) ∈ Rn we define the support of x as the set of elements

supp(x) = {i : xi 6= 0} ⊆ {1, · · · , n} .

8 ©2016 1QB Information Technologies

The key idea is that given a real vector x ∈ Rn, the p-th power of the p-norm of x approaches the cardinality of supp(x):

lim
p→0
‖x‖pp = lim

p→0

n∑
i=0

xp
i = # supp(x) .

Given an optimization problem 3 with an additional cardinality constraint

minimize y = f(x) x ∈ Rn , (4)
subject to gi(x) = ai for all i = 1, · · · , r,

hi(x) ≤ bi for all i = 1, · · · , s ,
supp(x) ≤ K.

We may remove the cardinality constraint by adding a penalty term to the objective function

minimize y = f(x) + C (‖x‖pp −K)2 x ∈ Rn , (5)
subject to gi(x) = ai for all i = 1, · · · , r,

hi(x) ≤ bi for all i = 1, · · · , s .

where p is a small number in (0, 1). This additional penalty term associates lower energy to sparser points x ∈ Rn.

Remark 1. The lower p is, the better the cardinality constraint is approximated with this objective function. On the other
hand, the Taylor expansions of the objective function are worse approximations of the function f(x) + C (‖x‖pp −K)2

when p is closer to 0. Therefore, we empirically choose intermediate values for p.

Remark 2. As p ranges from 1 to 0, the objective function deforms to more non-convex ones. Hence, a proposed idea
to alteration of p is choosing higher values of it in higher temperatures and decreasing p as temperature decreases.

Remark 3. The choice of C should ideally be such that the energy of points satisfying the cardinality constraint remains
unchanged and the energy of all points violating the cardinality constraint is increased. However, since the penalty
function is continuous this is not possible. We have to dynamically make choices of C through the algorithm such that it
best serves this purpose.

Remark 4. The values of f(x) and C (‖x‖pp −K)2 need to be comparable in Taylor expansions around a given centre, in
order for the D-Wave system to generate meaningful results. Hence, choice of C depends on considering the centre
and the neighbourhood. It also needs to be small enough so that it does not amplify the error of Taylor approximations.

Example 10 (Application to portfolio optimization). Given n assets indexed by integers {1, · · · , n}, we let ri be a
constant called the expected return of asset i. A symmetric positive semi-definite n× nmatrix C = (cij) is also given and
represents a covariance matrix. The portfolio optimization problem (Markowitz model) with cardinality constraint is

min
x∈Rn

f(x) =

n∑
i=1

n∑
j=1

cij xi xj (6)

subject to
n∑

i=1

xi = 1 , (7)

n∑
i=1

xiri = r , (8)

0 ≤ xi ≤ 1 ∀i ∈ {1, · · · , n} , (9)
supp(x) ≤ K . (10)

We have implemented an algorithm that uses the technique of §4 to solve this problem. The only feature of the
algorithm specific to this problem is the choice of vectors {b1, · · · , bm} from which we create Ising models. In fact, we
can always assume thatm = bn/3c. This means that if the largest complete graph that can be embedded on the chimera

9 ©2016 1QB Information Technologies

of a D-Wave system is of 33 variables, we are capable of solving this optimization problem in the presence of as many as
99 assets.

To do this we group assets in triples, and for each group we associate one direction vector bi. In each triple we choose
one leading asset that changes precisely according to the direction bi. The increment and decrement of the other two
are uniquely determined by the two linear constraints (5.2) and (5.3).

8 Experimental results
In appendices, we have benchmarked our method to solve the problem of portfolio optimization addressed in Chang et
al. [2] and Woodside-Oriakhi et al. [13]. Namely, we look at the problem

min
x∈Rn

f(x) =

n∑
i=1

n∑
j=1

cij xi xj

subject to
n∑

i=1

xi = 1 ,

n∑
i=1

xiri = r ,

xi ∈ {0} ∪ [`i, ui]∀i ∈ {1, · · · , n} ,
supp(x) = K .

We have used the same databases as the mentioned papers. Namely, for the five market indices Hang Seng (Hong Kong),
DAX 100 (Germany), FTSE 100 (UK), S&P 100 (USA), and the Nikkei 225 (Japan), we used the datasets provided at
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html. For S&P 500 (USA), and Russell 2000 (USA),
we used http://people.brunel.ac.uk/~mastjjb/jeb/orlib/indtrackinfo.html. We have set the cardinality
constraint parameter toK = 10 and used lower and upper bounds `i = 0.01 and ui = 1 as in case of [2] and [13].

In our examples, the temperature schedule is the Boltzmann schedule (inverse of logarithm), and the selection scheme,
is the choice of the best point out of all new points (hence always performing a jump, as if in very high temperature, but
to the minimum-valued point in the neighbourhood). The norm parameter p explained above, has a geometric variation
throughout the annealing process.

To test the precision of our results, we have used the same gap measure introduced by Chang et al. [2] and have
reported our gaps in the appended table.

References
[1] C. J. P. Bélisle. Convergence theorems for a class of simulated annealing algorithms on Rd. Journal of Applied

Probability, pages 885–895, 1992.

[2] T.-J. Chang, N. Meade, J. E. Beasley, and Y. M. Sharaiha. Heuristics for cardinality constrained portfolio
optimisation. Computers & Operations Research, 27(13):1271–1302, 2000.

[3] Ambedkar Dukkipati, M. Narasimha Murty, and Shalabh Bhatnagar. Cauchy annealing schedule: An annealing
schedule for boltzmann selection scheme in evolutionary algorithms. CoRR, cs.AI/0408055, 2004.

[4] Bruce Hajek. Cooling schedules for optimal annealing. Mathematics of Operations Research, 13(2):311–329, May
1988.

10 ©2016 1QB Information Technologies

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/indtrackinfo.html

[5] David E. Kaufman and Robert L. Smith. Direction choice for accelerated convergence in hit-and-run sampling.
Operations Research, 46(1):84–95, 1998.

[6] R. Kindermann, J.L. Snell, and American Mathematical Society. Markov Random Fields and Their Applications. AMS
books online. American Mathematical Society, 1980.

[7] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671–680, 1983.

[8] P. J. M. Laarhoven and E. H. L. Aarts, editors. Simulated Annealing: Theory and Applications. Kluwer Academic
Publishers, Norwell, MA, USA, 1987.

[9] M. Locatelli. Simulated annealing algorithms for continuous global optimization: Convergence conditions. Journal
of Optimization Theory and Applications, 104(1):121–133, 01 2000. Copyright - Plenum Publishing Corporation
2000; Last updated - 2010-06-06.

[10] Shmuel Onn and Ishay Weissman. Generating uniform random vectors over a simplex with implications to the
volume of a certain polytope and to multivariate extremes. Annals of Operations Research, 189(1):331–342, 2011.

[11] H. Szu and R. Hartley. Fast simulated annealing. Physics Letters A, 122:157–162, June 1987.

[12] David Vanderbilt and Steven G Louie. A monte carlo simulated annealing approach to optimization over continuous
variables. Journal of Computational Physics, 56(2):259–271, 1984.

[13] M. Woodside-Oriakhi, C. Lucas, and J.E. Beasley. Heuristic algorithms for the cardinality constrained efficient
frontier. European Journal of Operational Research, 213(3):538–550, 2011.

11 ©2016 1QB Information Technologies

N	
 Gap	
 measure	

and	
 time Chang	
 et	
 al.	
 SA Woodside-­‐

Oriakhi	
 et	
 al.	
 SA Mean	
 of	
 1QBit	
 Number	
 of	

Assets Chang	
 et	
 al.	
 SA Woodside-­‐

Oriakhi	
 et	
 al.	
 SA 1QBit	
 SA	

Mean	
 0.99 1.06 0.05 31 79 99 88

Median	
 1.21 0.54 0.00 85 210 293 80

Min 0.03 0.00 89 215 286 75

Max 4.64 1.11 98 242 371 74

Time	
 (s) 79 99 88 225 553 604 163

Mean	
 2.43 1.03 4.18

Median	
 2.47 0.87 0.62

Min 0.03 0.00

Max 4.41 20.23

Time	
 (s) 210 293 80

Mean	
 1.13 0.90 6.36

Median	
 0.71 0.39 2.64

Min 0.02 0.00

Max 10.20 59.31

Time	
 (s) 215 286 75

Mean	
 2.70 3.10 9.72

Median	
 1.13 2.11 8.61

Min 0.87 0.00

Max 8.67 32.19

Time	
 (s) 242 371 74

Mean	
 0.64 1.12 2.23

Median	
 0.63 0.69 0.70

Min 0.01 0.00

Max 3.97 27.99

Time	
 (s) 553 604 163

Silicon	
 Graphics	

Indigo	
 Station	

R4000,	
 100MHz,	

48MB	
 RAM

Intel	
 Core2	
 PC	

2.40	
 GHz,	
 3.24GB	

RAM

Intel	
 Core2	
 Duo	

MAC,	
 2.26	
 GHz,	

8GB	
 RAM

85DAX	
 100

31Hang	
 Seng

225Nikkei	
 225

98S&P	
 100

89FTSE	
 100

0	

100	

200	

300	

400	

500	

600	

700	

0	
 50	
 100	
 150	
 200	
 250	

Chang	
 et	
 al.	
 SA	

Woodside-­‐Oriakhi	
 et	
 al.	
 SA	

1QBit	
 SA	
 	

	Introduction
	A non-technical overview of simulated annealing
	The concept of simulated annealing
	Neighbourhood structure
	Temperature schedule
	Transition probability
	Acceptance criteria
	The algorithm
	Multi-agent simulated annealing

	Inputs of the software
	Conventional inputs
	New inputs

	Auxiliary components of the main algorithm
	Approximately uniform distribution in a domain
	Transition to neighbour points
	Local polynomial approximation of objective function
	Comparison of value of the neighbour points

	Main algorithm
	Case study: Cardinality constrained problems
	Experimental results

