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Abstract—We solve a multi-period portfolio opti-
mization problem using D-Wave Systems’ quantum
annealer. We derive a formulation of the problem,
discuss several possible integer encoding schemes, and
present numerical examples that show high success
rates. The formulation incorporates transaction costs
(including permanent and temporary market impact),
and, significantly, the solution does not require the
inversion of a covariance matrix. The discrete multi-
period portfolio optimization problem we solve is
significantly harder than the continuous variable
problem. We present insight into how results may be
improved using suitable software enhancements and
why current quantum annealing technology limits the
size of problem that can be successfully solved today.
The formulation presented is specifically designed to
be scalable, with the expectation that as quantum
annealing technology improves, larger problems will
be solvable using the same techniques.
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I. THE PROBLEM

A. Introduction

CONSIDER an asset manager wishing to invest
K dollars in a set of N assets with an invest-

ment horizon divided into T time steps. Given a
forecast of future returns and the risk of each asset
at each time step, the asset manager must decide
how much to invest in each asset at each time
step, while taking into account transaction costs,
including permanent and temporary market impact
costs.

One approach to this problem is to compute
the portfolio that maximizes the expected return
subject to a level of risk at each time step. This
results in a series of “statically optimal” portfolios.
However, there is a cost to rebalancing from a
portfolio that is locally optimal at t to a portfolio
that is locally optimal at t + 1. This means that
it is highly likely that there will be a different
series (or, a “trajectory”) of portfolios that will be
“globally optimal” in the sense that its risk-adjusted
returns will be jointly greater than the combined
risk-adjusted returns from the series of “statically
optimal” portfolios.

Mean-variance portfolio optimization problems
are traditionally solved as continuous-variable prob-
lems. However, for assets that can only be traded
in large lots, or for asset managers who are con-
strained to trading large blocks of assets, solving
the continuous problem yields an approximation,
and a discrete solution is expected to give better
results. For example, institutional investors are often
limited to trading “even” lots (due to a premium
on “odd” lots), that is, lots that are an integer
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multiple of a standard lot size, in which case the
problem becomes inherently more discrete as the
trade size increases versus the lot size. This could
occur, for example, due to the trading of illiquid
assets. Two common examples of block trading are
ETF-creation and ETF-redemption baskets, which
can only be traded in large multiples, such as fund
units of 100,000 shares each.

The discrete problem is non-convex due to the
fragmented nature of the domain, and is therefore
much harder to solve than a similar continuous
problem. Furthermore, our formulation allows the
covariance matrix to be ill-conditioned or degener-
ate. This complicates the finding of a solution using
traditional optimizers since a continuous relaxation
would still be non-convex, and therefore difficult to
solve.

B. Previous work

The single-period discrete portfolio optimization
problem has been shown to be NP-complete, regard-
less of the risk measure used [1], [2]. Jobst et al.
[3] showed that the efficient frontier of the discrete
problem is discontinuous and investigated heuristic
methods of speeding up an exact branch-and-bound
algorithm for finding it. Vielma et al. presented a
branch-and-bound algorithm and results for up to
200 assets [4]. Heuristic approaches, including an
evolutionary algorithm, were investigated by other
authors [1], [5], [6].

Bonami and Lejeune [7] solved a single-period
problem with integer trading constraints, minimiz-
ing the risk given a probabilistic constraint on
the returns (with no transaction costs), and finding
exact solutions via a branch-and-bound method for
problems with up to 200 assets. They considered
four different methods, of which one was able to
solve the largest problems to optimality in 83% of
the cases, but the other three failed for all problems
(the average run time for the largest problems was
4800 seconds). They found that solving the integer
problem was harder than solving a continuous prob-
lem of the same size with cardinality constraints or
minimum buy-in thresholds.

Gârleanu and Pedersen [8] solved a continuous
multi-period problem via dynamic programming,

deriving a closed-form solution when the covariance
matrix is positive definite, thereby offering insight
on the properties of the solutions to the multi-period
problem. A multi-period trade execution problem
was treated analytically by Almgren and Chriss
[9], motivating our inclusion of both temporary and
permanent price-impact terms.

The connection between spin glasses and
Markowitz portfolio optimization was shown by
Galluccio et al. [10]. The discrete multi-period
problem was suggested by López de Prado [11]
as being amenable to solving using a quantum
annealer. The contribution of this paper is to inves-
tigate the implementation and solution of a similar
discrete multi-period problem on the D-Wave quan-
tum annealer.

C. Integer formulation

The portfolio optimization problem described
above may be written as a quadratic integer op-
timization problem. We seek to maximize returns,
taking into account the risk and transaction costs,
including temporary and permanent market impact
(the symbols are defined in Appendix A),

(1)
w = argmaxw

T∑
t=1

(
µT
t wt −

γ

2
wT

t Σtwt

−∆wT
t Λt∆wt + ∆wT

t Λ
′

twt

)
,

subject to the constraints that the sum of holdings
at each time step be equal to K,

∀t :

N∑
n=1

wnt = K, (2)

and that the maximum allowed holdings of each
asset be K ′,

∀t, ∀n : wnt ≤ K ′. (3)

The first term in Eq. 1 is the sum of the returns
at each time step, which is given by the forecast
returns µ times the holdings w. The second term is
the risk, in which the forecast covariance tensor is
given by Σ, and γ is the risk aversion. The third and

http://dx.doi.org/10.1109/JSTSP.2016.2574703


This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSTSP.2016.2574703

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

SPECIAL ISSUE ON FINANCIAL SIGNAL PROCESSING AND MACHINE LEARNING FOR ELECTRONIC TRADING 3

fourth terms encapsulate transaction costs. Specif-
ically, the third term includes any fixed or relative
direct transaction costs, as well as the temporary
market impact, while the fourth term captures any
permanent market impact caused by trading activity.
The transaction cost term is square in the change in
the holdings, so it penalizes changes in the holdings
if the corresponding entry in Λt is positive [8]. The
permanent market impact term allows for the fact
that increasing a large holding requires executing
a large buy order, which increases the price, and
hence the returns [9].

D. Extensions

A straightforward extension can be made to solve
optimal trade execution problems. For example, in
order to solve a problem in which the asset manager
has K units invested and would like to liquidate
them over T time steps, the constraint in Eq. 2
would change to

∀t :

N∑
n=1

wnt ≤ K (4)

and the sum in the transaction cost and permanent
impact terms would extend to time step T + 1 with
wT+1 = 0 (the zero vector).

The risk term in Eq. 1 requires the estimation
of a covariance matrix for each time step. There
are cases in which this is problematic: for example,
if not enough data exists for a good estimate or
if some of the assets were not traded due to low
liquidity. An alternative and more direct way to
quantify risk is via the variance of the returns
stream of the proposed trajectory. This avoids the
issues with the estimation of covariance matrices.
An additional advantage of this method is that it
does not assume a normal distribution of returns.
The disadvantage is that if the number of time steps
T is small, the estimate of the true variance of the
proposed trajectory will be poor. A high variance of
returns is penalized regardless of whether it occurs
due to positive or negative returns.

The variance is quadratic in the returns, so it is a
suitable term to include in a quadratic integer for-
mulation. We use the identity Var(r) = 〈r2〉−〈r〉2,

and note that the returns stream is given by the
vector r[w] = diag(µTw). We find the alternative
risk term

(5)

risk[w] =
γ

T

T∑
t=1

[(
µT
t wt

)2
− 1

T

T∑
t′=1

(
µT
t wt

) (
µT
t′wt′

)]
.

II. SOLUTION USING A QUANTUM ANNEALER

A. Quantum annealing

Quantum annealing is a process which can be
used to find the optimal solution to optimization
problems, if these problems can be encoded as a
Hamiltonian [12], [13]. To this end, the quantum
system is first prepared such that it represents a
trivial problem, and is in the ground state of that
problem, which is an equally weighted superposi-
tion of all possible states. The system is then trans-
formed continuously to the point that it represents
the optimization problem that we want to solve. If
this process is done slowly enough, the adiabatic
theorem guarantees that the system will remain in
the ground state, as long as external disturbances
are absent. The state of the system is then read,
and in the ideal case it would correspond to the
optimal solution of the optimization problem we
wish to solve [14]. This process is referred to as
“adiabatic quantum computation”. In a real device,
external interference always exists to some degree,
so the result is probabilistic, and annealing the same
problem multiple times increases the probability of
finding the optimum. Therefore, quantum annealers
are effectively heuristic solvers.

It has been argued that quantum annealing has
an advantage over classical optimizers due to quan-
tum tunnelling. Quantum tunnelling allows an op-
timizer to more easily search the solution space of
the optimization problem, thereby having a higher
probability of finding the optimal solution. This
might provide a speed improvement over classical
optimizers, at least for certain problem classes [12],
[13], [15]–[17].

D-Wave Systems has developed a scalable quan-
tum annealer. Mathematically, this is a device
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which minimizes unconstrained binary quadratic
functions,

minxTQx (6)

s.t. x ∈ {0, 1}N ,

where Q ∈ RN×N [18]–[20]. In order to keep
external disturbances to a minimum, D-Wave Sys-
tems’ quantum annealer is cooled to 15 mK (about
180 times colder than interstellar space), is shielded
from RF signals due to its being housed inside a
metal enclosure, is shielded from external magnetic
fields larger than 1 nT (about 50,000 times less
than Earth’s magnetic field), and operates in a high-
vacuum environment in which the pressure is 10
billion times lower than atmospheric pressure [21].

There is strong evidence that the D-Wave ma-
chine is indeed quantum [22], [23]. Recently, there
has been significant interest in benchmarking the
D-Wave machines using different metrics, and of-
ten against classical solvers [24]–[29]. There is
an ongoing debate on how to define quantum
speedup, and on which problems a noisy quantum
annealer would be expected to show such a speedup
[30]–[32]. Recently, Denchev et al. claimed a 108

speedup over simulated annealing when solving a
specially constructed class of problems on a single-
core machine [33]. It is still an open question
whether D-Wave Systems’ quantum annealer shows
a quantum speedup. We expect new results to shed
light on this in the near future.

The connectivity of the qubits in D-Wave’s quan-
tum annealer is currently described by a square
Chimera graph [34]. This hardware graph is com-
posed of a lattice of bipartite unit cells containing
eight qubits. Qubits in adjacent unit cells are con-
nected if they are in the same position in the unit
cell (see Fig. 1 for an example).

If we label the number of unit cells along an edge
as s, then the total number of qubits is q = 8s2. The
hardware graph is sparse and in general does not
match the problem graph, which is defined by the
adjacency matrix of the problem matrix Q. In order
to solve problems that are denser than the hardware
graph, we identify multiple physical qubits with a
single logical qubit (a problem known as “minor
embedding” [35], [36]), at the cost of using many

more physical qubits. For square Chimera hardware
graphs, the size V of the largest fully dense problem
that can be embedded on a chip with q qubits is
V =

√
2q+1 = 4s+1, assuming no faulty qubits or

couplers. For example, the latest chip is the D-Wave
2X1, which has s = 12 unit cells along each side,
giving q = 1152 qubits, for which we get V =
49. Lower-density problems of significantly larger
size can be embedded. For example, on one of the
annealers used in this study, which has 1100 qubits,
problems with Vb ' 140 and a density of ' 0.1
were able to be embedded.

B. From integer to binary

To solve this problem using the D-Wave quantum
annealer, the integer variables of Eq. 1 must be
recast as binary variables, and the constraints must
be incorporated into the objective function. We have
investigated four different encodings: binary, unary,
sequential, and partitioning. The first three can be
described by writing the integer holdings as a linear
function of the binary variables,

wnt[x] =

D∑
d=1

f(d)xdnt, (7)

Fig. 1: An example hardware graph, showing the
connectivity of the qubits for a Chimera graph with
s = 4 unit cells in each row/column, giving a total
of q = 128 qubits.

1as of April 2016
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TABLE I: Encodings: f(d) is the encoding function
and D is the bit depth.

Encoding f(d) D

Binary 2d−1 log2(K ′ + 1)
Unary 1 K ′

Sequential d
(√

1 + 8K ′ − 1
)
/2

where xdnt ∈ {0, 1} and the encoding function f(d)
and the bit depth D for each encoding are given in
Table I.

The fourth encoding involves finding all parti-
tions of K into N assets with K ′ or less units in
each asset, and assigning a binary variable to each
encoding at each time step.

We summarize the properties of each of the
four encodings described above in Table II. Which
encoding is preferred will depend on the problem
being solved and the quantum annealer being used.
Table III presents the number of variables required
for some example multi-period portfolio optimiza-
tion problems for each of these encodings.

For binary, unary, and sequential encodings,
there is a trade-off between the efficiency of the
encoding—the number of binary variables needed
to represent a given problem—and the largest inte-
ger that can be represented. The reason is that for
an encoding to be efficient it will typically intro-
duce large coefficients, limiting the largest integer
representable (due to the noise level in the quantum
annealer). For example, the binary encoding is the
most efficient of the three (that is, it requires the
fewest binary variables); however, it is the most sen-
sitive to noise, and hence can represent the smallest
integer of the three, given some number of qubits.
Conversely, the unary encoding is the worst of the
three in efficiency, but can represent the largest
integer. An additional consideration is that some
encodings introduce a redundancy that biases the
quantum annealer towards certain solutions. Briefly,
each integer can be encoded in multiple ways, the
number of which is (in general) different for each
integer. In this scenario, the quantum annealer is
biased towards integers that have a high redundancy.

The partition encoding is different in that it re-

quires an exponential number of variables; however,
it allows a straightforward formulation of com-
plicated constraints, like cardinality, by excluding
partitions that break the constraints, which also
lowers the number of variables required. For the
other three encodings, constraints can be modelled
through the encoding (for example, a minimum or
maximum holdings constraint), or through linear or
quadratic penalty functions. We note that the actual
number of physical qubits required could be much
larger than the number of variables indicated in
Table III due to the embedding (see Section II-A).

In many cases, the maximum holdings K ′, which
is also the largest integer to be represented, will
not be exactly encodable using the binary and
sequential encodings. For example, using a binary
encoding one can encode the values 0 to 7 using
three bits, and 0 to 15 using four bits, but integers
with a maximum value between 7 and 15 are
not exactly encodable. In order to avoid encoding
infeasible holdings, these can be penalized by an
appropriate penalty function. However, this penalty
function will typically be a high-order polynomial
and require many auxiliary binary variables in order
to reduce it to a quadratic form. Instead, we propose
to modify the encoding by adding bits with the
specific values needed. For example, {1, 1, 2, 2, 4}
represents a modified binary encoding for the values
0 to 10.

The constraints of Eq. 2 can be incorporated into
the objective function by rearranging the equations,
squaring them, and summing the result, obtaining
the penalty term

penalty[w] = −M
T∑

t=1

(
K −

N∑
n=1

wnt

)2

, (8)

where M > 0 is the strength of the penalty. In
theory, M can be chosen large enough such that
all feasible solutions have a higher value than all
infeasible solutions. In practice, having an overly
large M leads to problems due to the noise in
the system (see Section II-D), so we choose it
empirically by trial and error. In the future, it
might be possible to include equality constraints of
this form via a change in the quantum annealing
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TABLE II: Comparison of the four encodings described in Section II-B. The column “Variables” refers to
the number of binary variables required to represent a particular problem. The column “Largest integer”
refers to a worst-case estimate of the largest integer that could be represented based on the limitation
imposed by the noise level ε and the ratio between the largest and smallest problem coefficients δ and
n ≡ 1/

√
εδ.

Encoding Variables Largest integer Notes

Binary TN log2(K ′ + 1) b2nc − 1
Most efficient in number of variables; allows
representing of the second-lowest integer.

Unary TNK ′ No limit

Biases the quantum annealer due to differing
redundancy of code words for each value;
encoding coefficients are even, giving no de-
pendence on noise, so it allows representing
of the largest integer.

Sequential 1
2TN

(√
1 + 8K ′ − 1

)
1
2 bnc (bnc+ 1)

Biases the quantum annealer (but less than
unary encoding); second-most-efficient in
number of variables; allows representing of
the second-largest integer.

Partition ≤ T
(
K+N−1
N−1

)
bnc

Can incorporate complicated constraints eas-
ily; least efficient in number of variables;
only applicable for problems in which
groups of variables are required to sum to
a constant; allows representing the lowest
integer.

process, allowing us to drop this term [37].
We note that an alternative approach, involving

the tiling of the integer search space with binary
hypercubes, was investigated by [38]; however, it
requires an exponential number of calls to the
quantum annealer. In addition, a

C. Numerical Results

The results for a range of portfolio optimization
problems are presented in Table IV. For each prob-
lem 200 random instances were generated. Each
instance was solved using one query to the quan-
tum annealer, with 1000 reads per query (which
involved either 1 call or 5 calls if averaging over
gauges)2. All results were obtained from chips with
a hardware graph with either 512 or 1152 qubits.
(The number of active qubits was a little smaller.)

2We have observed that the success rate rises when increas-
ing the number of reads, for a fixed problem size. If the number
of reads is fixed, the success rate is expected to decrease as
problem size increases, as seen in the results.

For validation purposes, each instance was also
solved using an exhaustive integer solver to find
the optimal solution. For the larger problems, a
heuristic solver was run a large number of times
in order to find the optimal solution with high
confidence.

As a solution metric, we used the percentage of
instances for each problem for which the quantum
annealer’s result fell within perturbation magnitude
α% of the optimal solution, denoted by S(α). This
metric was evaluated by perturbing each instance
at least 100 times, by adding Gaussian noise with
standard deviation given by α% of each eigenvalue
of the problem matrix Q. Each perturbed problem
was solved by an exhaustive solver, and the optimal
solutions were collected. If the quantum annealer’s
result for that instance fell within the range of
optimal values collected, then it was deemed suc-
cessful (within a margin of error). This procedure
was repeated for each random problem instance,
giving a total success rate for that problem. For the
case α = 0, this reduces to defining success as the
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TABLE III: Dependence of the number of binary variables required on the number of units K, number
of assets N , and the number of time steps T for some example values (here we assumed K ′ = K/3).
The number of variables is given for the three linear encodings: binary Vb, unary Vu, and sequential Vs.

N T K K ′ Vb Vu Vs
5 5 15 5 75 125 75

10 10 15 5 300 500 300
10 15 15 5 450 750 450
20 10 15 5 600 1000 600
50 5 15 5 750 1250 750
20 15 15 5 900 1500 900
50 10 15 5 1500 2500 1500
50 15 15 5 2250 3750 2250

TABLE IV: Results using D-Wave’s 512-qubit quantum annealer (with 200 instances per problem): N is
the number of assets, T is the number of time steps, K is the number of units to be allocated at each time
step and the maximum allowed holding (with K ′ = K), “encoding” refers to the method of encoding
the integer problem into binary variables, “vars” is the number of binary variables required to encode
the given problem, “density” is the density of the quadratic couplers, “qubits” is the number of physical
qubits that were used, “chain” is the maximum number of physical qubits identified with a single binary
variable, and S(α) refers to the success rate given a perturbation magnitude α% (explained in the text).

N T K encoding vars density qubits chain S(0) S(1) S(2)
2 3 3 binary 12 0.52 31 3 100.00 100.00 100.00
2 2 3 unary 12 0.73 45 4 97.00 99.50 100.00
2 4 3 binary 16 0.40 52 4 96.00 100.00 100.00
2 3 3 unary 18 0.53 76 5 94.50 99.50 100.00
2 2 7 binary 12 0.73 38 4 90.50 100.00 100.00
2 5 3 binary 20 0.33 63 4 89.00 100.00 100.00
2 6 3 binary 24 0.28 74 4 50.00 97.50 99.50
3 2 3 unary 18 0.65 91 6 38.50 72.50 91.50
3 3 3 binary 18 0.45 84 5 35.50 66.50 82.50
3 4 3 binary 24 0.35 106 6 9.50 50.50 84.50

finding of the optimal solution.

The chosen approach relaxes the success metric
in a problem-instance-specific way. An alternative
would be to define success as finding a solution
within ε of the optimum. However this alternative
success metric has the disadvantage that ε could be
small or large compared to the energy scale of a
particular problem instance, and so the metric can
be misleading for problems of the type being solved
here.

Although the variance of the success rate would
also be interesting to observe, the number of exper-
imental runs required for this metric to be statisti-
cally significant were not able to be performed due
to a limited availability of machine time.

In order to investigate the quality of the solution
on software enhancements, we replaced the “em-
bedding solver” supplied with the D-Wave quan-
tum annealer with a proprietary embedding solver
developed by 1QBit, tuned the identification cou-
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TABLE V: Results using D-Wave’s 512-qubit quantum annealer, with custom-tuned parameters and
software (with 200 instances per problem): an improved embedding solver, fine-tuned identification
coupling strengths, and averaging over 5 random gauges (200 reads per gauge, giving a total of 1000
reads per call). Columns are as in Table IV, and the hardware used was the same as in that table.

N T K encoding vars density qubits chain S(0) S(1) S(2)
2 3 3 binary 12 0.52 31 3 100.00 100.00 100.00
2 4 3 binary 16 0.40 52 4 99.50 100.00 100.00
3 2 3 unary 18 0.65 91 6 99.00 100.00 100.00
2 3 3 unary 18 0.53 76 5 98.50 99.50 100.00
2 5 3 binary 20 0.33 63 4 96.00 100.00 100.00
2 6 3 binary 24 0.28 74 4 80.00 100.00 100.00
2 4 3 unary 24 0.41 104 6 70.50 96.50 99.50
3 4 3 binary 24 0.35 106 6 44.00 92.50 99.00
3 3 3 binary 18 0.45 84 5 65.50 98.00 100.00
3 6 3 binary 36 0.24 196 7 0.50 74.50 99.00
4 4 3 binary 32 0.32 214 8 1.50 13.50 60.50
4 5 3 binary 40 0.26 281 10 0.00 3.00 24.00

TABLE VI: Results using D-Wave’s 1152-qubit quantum annealer (with 200 instances per problem), with
lower noise and higher yield, and with custom-tuned parameters and software (as in Table V). Columns
are as in Table IV.

N T K encoding vars density qubits chain S(0) S(1) S(2)
3 2 3 unary 18 0.65 86 5 99.50 100.00 100.00
3 3 3 binary 18 0.45 61 4 83.50 99.00 100.00
3 3 3 unary 27 0.46 146 7 81.50 92.50 97.00
3 4 3 binary 24 0.35 87 5 75.50 100.00 100.00
3 4 3 unary 36 0.36 209 8 40.50 52.50 60.50
4 4 3 binary 32 0.32 157 6 27.00 46.50 64.50
3 6 3 binary 36 0.24 143 5 15.50 59.00 78.50
4 5 3 binary 40 0.26 210 7 4.00 34.50 64.00
5 5 3 binary 50 0.25 321 8 4.00 13.00 27.00
6 5 3 binary 60 0.24 492 10 2.00 20.50 49.50
6 6 3 binary 72 0.20 584 11 0.00 6.50 21.00

pling strength, and combined results from calls with
multiple random gauges. A gauge transformation
is accomplished by assigning +1 or −1 to each
qubit, and flipping the sign of the coefficients in
the problem matrix accordingly, such that the op-
timization problem remains unchanged. We found
a large improvement for all problems. Results with
these improvements are presented in Table V.

To investigate the dependence of the success
rate on the noise level and qubit yield of the
quantum annealer, several problems were solved on
two different quantum annealing chips. Results for
the second chip, the D-Wave 2X, which has 1152
qubits, a lower noise level and fewer inactive qubits
and couplers, are presented in Table VI. We found
an increase in all success rates, as well as the ability
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to solve larger problems.
These investigations highlight the importance

of having an in-depth understanding of D-Wave’s
quantum annealer in order to be able to achieve the
best results possible.

D. Discussion
The success rate and the ability to solve larger

problems are affected by certain hardware parame-
ters of the quantum annealer. First, there is a level of
intrinsic noise which manifests as a misspecification
error—the coefficients of the problem that the quan-
tum annealer actually solves differ from the problem
coefficients by up to ε. 3 For future chip generations
the expectation is that ε will decrease, and hence the
success rate will increase by virtue of the quantum
annealer solving a problem that is closer to the
problem passed to it. In addition, the problem coef-
ficients on the chip have a defined coefficient range,
and if the specified problem has coefficients outside
this range, the entire problem is scaled down. This
can result in coefficients becoming smaller than
ε, affecting the success rate. These factors are
especially relevant for high-precision problems such
as the multi-period portfolio optimization problem
solved here.

The quantum annealer has a hardware graph
that is currently very sparse and in general does
not match the problem graph. In order to solve
problems that are denser than the hardware graph,
multiple physical qubits are identified with a single
binary variable, at the cost of using more physical
qubits. In order to force the identified qubits to all
have the same value, a strong coupling is needed.
If the required coupling is outside of the range of
the couplings in the problem, the result will be
an additional scaling, possibly reducing additional
coefficients to less than ε, again impacting the
success rate. Generally, the denser the hardware
graph is, the fewer identifications are needed, and
the weaker the couplings are required to be to
identify the qubits.

To solve larger problems, the number of qubits
must be greater. More qubits would also allow the

3The intrinsic noise for the current generation of chip is
estimated to be around 2%–4% of the full scale.

use of an integer encoding scheme that is less
sensitive to noise levels (such as unary encoding
versus binary encoding). The fabrication process is
not perfect, resulting in inactive qubits and couplers.
The more inactive qubits and couplers there are
on a chip, the lower the effective density and the
higher the number of identifications required, which
typically reduces the success rate.

In addition, custom tuning, through software, can
be used to enhance the results. In particular, when
the problem to be solved has a graph that differs
from the hardware graph, a mapping, referred to as
an “embedding”, must be found from the problem
graph to the hardware graph. The development of
sophisticated ways to find better embeddings (for
example, with fewer identified qubits) would be
expected to increase the success rate—often the
structure of the problem can be exploited in order
to find better embeddings. In addition, when an
embedding is used, there are different ways in
which the couplings of the identified qubits should
be set, controlled by the “embedding solver”. For
example, the strength of the couplings could be fine-
tuned further to give higher success rates, or tuned
separately for each set of identified qubits [39].

The issue of which embedding properties are
most desirable is still under active research. Here
the pi-elite metric has been used to select the best
scaling of the problem versus the strength of the
qubit identification chains, and to choose the best
embedding amongst the highest-ranked embeddings
[39]. The pi-elite score is determined by comparing
the mean energy of the best (“elite”) states (for
example, the lowest 2%) found by using each
scale/embedding. The embeddings were ranked us-
ing a scheme that combines equal weights based on
the shortest of the longest chains, the total number
of qubits, and the variance of the lengths of the
chains, after which the highest-ranked embeddings
were compared using their pi-elite scores.

In addition it has been observed that there is
a gauge transformation under which the problem
and solution remain invariant, but the success rates
vary strongly (due to imperfections in the annealing
chip). Combining results from multiple calls to
the solver with random gauges, as we did, could
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provide a large improvement [39]. Software error
correction, such as majority voting (which we em-
ployed) when the identified physical qubits do not
agree, as well as calibration, could also lead to
improved solutions [40]–[46]. We also note that it
may be possible to use the quantum annealer to find
good local minima, which could then be used to
speed up deterministic or heuristic classical solvers
[47], [48].

Although the core contributions of this paper are
the formulation of the general multi-period opti-
mization strategy and discussion of the issues in-
volved in solving that problem using available quan-
tum annealing hardware, a brief comment regarding
the time taken to calculate a solution is warranted.
In general, benchmarking of the time to solution
of a D-Wave quantum annealer against classical
hardware is an area of ongoing and active research.
For the small-scale problems solved in this study,
the time to solution, on both classical hardware
and using the quantum annealer, is comparable. The
recent results by Denchev et al. [33], which show
that for a specific class of problems the D-Wave
machine has the potential to provide speedup over
computations on classical hardware, are encourag-
ing. However, only after quantum speedup has been
demonstrated for general problems, and specifically
those requiring a high precision of couplings, is it
expected that a quantum speedup for the optimal
trading trajectory problem will be observed.

III. CONCLUSIONS

In this limited experiment we have demonstrated
the potential of D-Wave’s quantum annealer to
achieve high success rates when solving an impor-
tant and difficult multi-period portfolio optimization
problem. We have also shown that it is possible
to achieve a considerable improvement in success
rates by fine-tuning the operation of the quantum
annealer.

Although the current size of problems that can be
solved is small, technological improvements in fu-
ture generations of quantum annealers are expected
to provide the ability to solve larger problems, and
at higher success rates.

Since larger problems are expected to be in-
tractable on classical computers, there is much
interest in solving them efficiently using quantum
hardware.

APPENDIX A
DEFINITION OF SYMBOLS

The symbols used above are defined in Table VII.
In addition, we use wt to denote the t-th column of
the matrix w (and similarly for µ), and Σt to denote
the covariance matrix (N × N ) which is the t-th
page of the tensor Σ. For convenience of notation,
the temporary transaction costs c are represented
using the tensor Λ, where Λtnn′ = cntδnn′ (and
similarly for the permanent price impact c′ and
Λ′). The difference in holdings between two time
periods is defined as ∆wt ≡ wt − wt−1.
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