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Reinforcement learning (RL) has become a proven method for optimizing a procedure for which
success has been defined, but the specific actions needed to achieve it have not. We apply the so-
called “black box” method of RL to what has been referred as the “black art” of simulated annealing
(SA), demonstrating that an RL agent based on proximal policy optimization can, through experi-
ence alone, arrive at a temperature schedule that surpasses the performance of standard heuristic
temperature schedules for two classes of Hamiltonians. When the system is initialized at a cool tem-
perature, the RL agent learns to heat the system to “melt” it, and then slowly cool it in an effort to
anneal to the ground state; if the system is initialized at a high temperature, the algorithm immedi-
ately cools the system. We investigate the performance of our RL-driven SA agent in generalizing to
all Hamiltonians of a specific class; when trained on random Hamiltonians of nearest-neighbour spin
glasses, the RL agent is able to control the SA process for other Hamiltonians, reaching the ground
state with a higher probability than a simple linear annealing schedule. Furthermore, the scaling
performance (with respect to system size) of the RL approach is far more favourable, achieving a
performance improvement of one order of magnitude on L = 142 systems. We demonstrate the
robustness of the RL approach when the system operates in a “destructive observation” mode, an
allusion to a quantum system where measurements destroy the state of the system. The success of
the RL agent could have far-reaching impact, from classical optimization, to quantum annealing, to
the simulation of physical systems.

I. INTRODUCTION

In metallurgy and materials science, the process of an-
nealing is used to equilibrate the positions of atoms to
obtain perfect low-energy crystals. Heat provides the en-
ergy necessary to break atomic bonds, and high-stress
interfaces are eliminated by the migration of defects. By
slowly cooling the metal to room temperature, the metal
atoms become energetically locked in a lattice structure
more favourable than the original structure. Metallur-
gists can tune the temperature schedule to arrive at final
products that have desired characteristics, such as ductil-
ity and hardness. Annealing is a biased stochastic search
for the ground state.

An analogous in silico technique, simulated annealing
(SA) [1], can be used to find the ground state of spin-
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glass models, an NP-hard problem [2]. A spin glass is
a graphical model consisting of binary spins Si. The
connections between spins are defined by the coupling
constants Jij , and a linear term with coefficients hi can
apply a bias to individual spins. The Hamiltonian

H = −
∑
i 6=j

JijSiSj −
∑
i

hiSi, Si = ±1

defines the energy of the microstates [3]. The choices
of the quadratic coupling coefficients Jij and the lin-
ear bias coefficients hi effect the interesting dynamics of
the model: Jij can be randomly distributed according to
a Gaussian distribution [3], encompass all i, j combina-
tions for a fully connected Hamiltonian, or be limited to
short-range (e.g., nearest-neighbour, 〈i, j〉) interactions,
to name a few. For example, when the positive, unit-
magnitude coupling is limited to nearest-neighbour pairs,
the ubiquitous ferromagnetic Ising model [4] is recovered.
Examples of the Hamiltonians we investigate in this work
are presented in Figure 1 and discussed in further detail
in Section VI.
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a b

Weak-strong clusters (WSC) Spin glass (SG)

FIG. 1. Two classes of Hamiltonian problems are depicted.
(a) The weak-strong clusters (WSC) model comprises two bi-
partite clusters. The left cluster is biased upward; the right
cluster is biased downward. All couplings are equal and of
unit magnitude. The two clusters are coupled via the eight
central nodes. This model exhibits a deep local minimum
very close in energy to the model’s global minimum. When
initialized in the local minimum, the RL agent is able to learn
schemes to escape the local minimum and arrive at the global
minimum, without any explicit knowledge of the Hamiltonian.
(b) Here we present an example spin-glass model. The nodes
are coupled to nearest neighbours with random Gaussian-
distributed coupling coefficients. The nodes are unbiased, and
the couplings are changed at each instantiation of the model.
The RL algorithm is able to learn a dynamic temperature
schedule by observing the system throughout the annealing
process, without explicit knowledge of the form of the Hamil-
tonian, and the learned policy can be applied to all instances
of randomly generated couplings. We demonstrate this on
variably sized spin glasses and investigate the scaling with
respect to a classic linear SA schedule. In (c), we show snap-
shots of a sample progression of a configuration undergoing
SA under the ferromagnetic Ising model Hamiltonian and a
constant cooling schedule. The terminal state, all spins-up, is
the ground state; this anneal would be considered successful.

Finding the ground state of (i.e., “solving”) such sys-
tems is interesting from the perspective of thermody-
namics, as one can observe phenomena such as phase
transitions [5, 6], but also practically useful as discrete
optimization problems can be mapped to spin-glass mod-
els (e.g., the travelling salesperson problem or the knap-
sack problem) [7]. The Metropolis–Hastings algorithm
[8, 9] can be used to simulate the spin glass at arbi-
trary temperature; thus, it is used ubiquitously for SA.
By beginning the simulation at a high temperature, one
can slowly cool the system over time, providing sufficient
thermal energy to escape local minima, and arrive at the
ground state “solution” to the problem. The challenge
is to find a temperature schedule that minimizes compu-
tational effort while still arriving at a satisfactory solu-
tion; if the temperature is reduced too rapidly, the sys-

tem will become trapped in a local minimum, and reduc-
ing the temperature too slowly results in an unnecessary
computational expense. Kirkpatrick et al. [1, 10] pro-
posed starting at a temperature that results in an 80%
acceptance ratio (i.e., 80% of Metropolis spin flips are
accepted) and reducing the temperature geometrically.
They also recommended monitoring the objective func-
tion and reducing the cooling rate if the objective value
(e.g., the energy) drops too quickly. More-sophisticated
adaptive temperature schedules have been investigated
[11]. Nevertheless, in his 1987 paper, Bounds [12] said
that “choosing an annealing schedule for practical pur-
poses is still something of a black art”.

When framed in the advent of quantum computa-
tion and quantum control, establishing robust and dy-
namic scheduling of control parameters becomes even
more relevant. For example, the same optimization prob-
lems that can be cast as classical spin glasses are also
amenable to quantum annealing [13–17], exploiting, in
lieu of thermal fluctuations, the phenomenon of quan-
tum tunnelling [18–20] to escape local minima. Quan-
tum annealing (QA) was proposed by Finnila et al. [21]
and Kadowaki and Nishimori [22], and, in recent years,
physical realizations of devices capable of performing QA
(quantum annealers), have been developed [23–26], and
are being rapidly commercialized. As these technologies
progress and become more commercially viable, practi-
cal applications [17, 27] will continue to be identified and
resource scarcity will spur the already extant discussion
of the efficient use of annealing hardware [28, 29].

Nonetheless, there are still instances where the classical
(SA) outperforms the quantum (QA) [30], and improv-
ing the former should not be undervalued. In silico and
hardware annealing solutions such as Fujitsu’s FPGA-
based Digital Annealer [31], NTT’s laser-pumped coher-
ent Ising machine (CIM) [32], and the quantum circuit
model algorithm known as QAOA [33, 34] all demand the
scheduling of control parameters, whether it is the tem-
perature in the case of the Digital Annealer, or the power
of the laser pump in the case of CIM. Heuristic methods
based on trial-and-error experiments are commonly used
to schedule these control parameters, and an automatic
approach could expedite development, and improve the
stability of such techniques.

In this work, we demonstrate the use of a reinforcement
learning (RL) method to learn the “black art” of classic
SA temperature scheduling, and show that an RL agent
is able to learn dynamic control parameter schedules for
various problem Hamiltonians. The schedules that the
RL agent produces are dynamic and reactive, adjusting
to the current observations of the system to reach the
ground state quickly and consistently without a priori
knowledge of a given Hamiltonian. Our technique, aside
from being directly useful for in silico simulation, is an
important milestone for future work in quantum infor-
mation processing, including for hardware- and software-
based control problems.
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FIG. 2. A neural network is used to learn the control parameters for several SA experiments. By observing a lattice of
spins, the neural network can learn to control the temperature of the system in a dynamic fashion, annealing the system to
the ground state. The spins at time t form the state st fed into the network. Two concurrent convolutional layers extract
features from the state. These features are combined with a dense layer and fed into a recurrent module (an LSTM module)
capable of capturing temporal characteristics. The LSTM module output is reduced to two parameters used to form the policy
distribution πθ(at | st) as well as to approximate the value function V (st) used for the generalized advantage estimate.

II. REINFORCEMENT LEARNING

Reinforcement learning is a branch of dynamic pro-
gramming whereby an agent, residing in state st at time
t, learns to take an action at that maximizes a cumu-
lative reward signal R by dynamically interacting with
an environment [35]. Through the training process, the
agent arrives at a policy π that depends on some observa-
tion (or “state”) of the system, s. In recent years, neural
networks have taken over as the de facto function ap-
proximator for the policy. Deep reinforcement learning
has seen unprecedented success, achieving superhuman
performance in a variety of video games [36–39], board
games [40–42], and other puzzles [43, 44]. While many
reinforcement learning algorithms exist, we have chosen
to use proximal policy optimization (PPO) [45], imple-
mented within Stable Baselines [46] for its competitive
performance on problems with continuous action spaces.

III. THE ENVIRONMENT

We developed an OpenAI gym [47] environment which
serves as the interface to the “game” of simulated an-
nealing. Let us now define some terminology and pa-
rameters important to simulated annealing. For a given
Hamiltonian, defining the interactions of L spins, we cre-
ate Nreps randomly initialized replicas (unless otherwise
specified). The initial spins of each replica are drawn
from a Bernoulli distribution with probability of a spin-
up being randomly drawn from a uniform distribution.
These independent replicas are annealed in parallel. The
replicas follow an identical temperature schedule with
their uncoupled nature providing a mechanism for statis-
tics of the system to be represented through an ensem-

ble of measurements. In the context of the Metropolis–
Hastings framework, we define one “sweep” to be L ran-
dom spin flips (per replica), and one “step” to be Nsweeps.
After every step, the environment returns an observation
of the current state st of the system, an Nreps × L ar-
ray consisting of the binary spin values present. This
observation can be used to make an informed decision
of the action at that should be taken. The action, a
single scalar value, corresponds to the total inverse tem-
perature change ∆β that should be carried out over the
subsequent step. The choice of action is provided to the
environment, and the process repeats until Nsteps steps
have been taken, comprising one full anneal, or “episode”
in the language of RL. If the chosen action would result in
the temperature becoming negative, no change is made
to the temperature and the system continues to evolve
under the previous temperature.

A. Observations

For the classical version of the problem, an observation
consists of the explicit spins of an ensemble of replicas.
In the case of an unknown Hamiltonian, the ensemble
measurement is important as the instantaneous state of
a single replica does not provide sufficient information
about the current temperature of the system. Provid-
ing the agent with multiple replicas allows it to compute
statistics and have the possibility of inferring the tem-
perature. For example, if there is considerable variation
among replicas, then the system is likely hot, whereas if
most replicas look the same, the system is probably cool.

When discussing a quantum system, where the spins
represent qubits, direct mid-anneal measurement of the
system is not possible as measurement causes a collapse
of the wavefunction. To address this, we discuss experi-
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ments conducted in a “destructive observation” environ-
ment, where measurement of the spins is treated as a
“one-time” opportunity for inclusion in RL training data.
The subsequent observation is then based on a different
set of replicas that have evolved through the same sched-
ule, but from different initializations.

IV. REINFORCEMENT LEARNING
ARCHITECTURE

Through the framework of reinforcement learning, we
wish to produce a policy function πθ(at | st) that takes
the observed binary spin state st ∈ {−1, 1}Nreps×L and
produces an action at corresponding to the optimal
change in the inverse temperature. Here π is a distribu-
tion represented by a neural network and the subscript
θ denotes parameterization by learnable weights θ. We
define the function

φk(st) ∈ {−1, 1}1×L

as an indexing function that returns the binary spin val-
ues for the k-th rep of state st.

The neural network is composed of two parts: a con-
volutional feature extractor, and a recurrent network to
capture the temporal characteristics of the problem. The
feature extractor comprises two parallel two-dimensional
convolutional layers. The first convolutional layer has
Nkr kernels of size 1×L, and aggregates along the repli-
cas dimension, enabling the collection of spin-wise statis-
tics across the replicas. The second convolutional layer
has Nks kernels of size Nreps × 1 and slides along the
spin dimension, enabling the aggregation of replica-wise
statistics across the spins. The outputs of these layers
are flattened, concatenated, and fed into a dense layer of
size Nd hidden nodes. This operates as a latent space
encoding for input to a recurrent neural network (a long
short-term memory, or LSTM, module [48]), used to cap-
ture the sequential nature of our application. The latent
output of the LSTM module is of size NL. For simplicity,
we set Nkr = Nks = Nd = NL = 64. All activation func-
tions are hyperbolic tangent (tanh) activations. Since at
can assume a continuum of real values, this task is re-
ferred to as having a continuous action space, and thus
standard practice is for the network to output two val-
ues corresponding to the first and second moments of a
normal distribution. During training, when exploration
is desired, an entropic regularization in the PPO cost
function can be used to encourage a high variance (i.e.,
encouraging σ2 to remain sizable). Additionally, PPO
requires an estimate of the generalized advantage func-
tion [49], the difference between the reward received by
taking action at while in state st, and the expected value
of the cumulative future reward prior to an action being
taken. The latter, termed the “value function”, or V (st),
cannot possibly be computed because we know only the
reward from the action that was chosen, and nothing

about the actions that were not chosen, but we can es-
timate it using a third output from our neural network.
Thus, as seen in Figure 2, the neural network in this work
takes the state st and maps it to three scalar quantities,
µ, σ2, and V (st), defining the two moments of a normal
distribution and an estimate of the value function, re-
spectively. At the core of RL is the concept of reward
engineering, that is, developing a reward scheme to in-
ject a notion of success into the system. As we only care
about reaching the ground state by the end of a given
episode, we use a sparse reward scheme, with a reward of
zero for every time step before the terminal step, and a
reward equal to the negative of the minimum energy as
the reward for the terminal step, that is,

Rt =

{
0, t < Nsteps

−min
k
H(φk(st)), t = Nsteps

, (1)

where k ∈ [1, Nreps]. With this reward scheme, we en-
courage the agent to arrive at the lowest possible energy
by the time the episode terminates, without regard to
what it does in the interim. In searching for the ground
state, the end justifies the means.

When optimizing the neural network, we use a PPO
discount factor of γ = 0.99, eight episodes between
weight updates, a value function coefficient of c1 = 0.5,
an entropy coefficient of c2 = 0.001, a clip range of
ε = 0.05, a learning rate of α = 1 × 10−6, and a sin-
gle minibatch per update. Each agent is trained over
the course of 25, 000 episodes (anneals), with Nsteps = 40
steps per episode, and with Nsweeps = 100 sweeps sepa-
rating each observation. We used Nreps = 64 replicas for
each observation.

V. EVALUATION

Whereas the RL policy can be made deterministic,
meaning a given state always produces the same action,
the underlying Metropolis algorithm is stochastic; thus,
we must statistically define the metric for success. We
borrow this evaluation scheme from Aramon et al. [50].
Each RL episode will either result in “success” or “fail-
ure”. Let us define the “time to solution” as

Ts = τn99 , (2)

that is, the number of episodes that must be run to be
99% sure the ground state has been observed at least
one time (n99), multiplied by the time τ taken for one
episode.

Let us also define Xi as the binary outcome of the i-th
episode, with Xi = 1 (0) if at least one (none) of the Nreps

replicas are observed to be in the ground state at episode
termination. The quantity Y ≡

∑n
i=1Xi is the number

of successful episodes after a total of n episodes, and
p ≡ P (Xi = 1) denotes the probability that an anneal i
will be successful. Thus the probability of exactly k out
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of n episodes succeeding is given by the probability mass
function of the binomial distribution

P (Y = k | n, p) =

(
n
k

)
pk(1− p)n−k. (3)

To compute the time to solution, our quantity of inter-
est is the number of episodes n99 where P = 0.99, that
is,

P (Y ≥ 1 | n99, p) = 0.99.

From this and (3), it can be shown that

n99 =
log (1− 0.99)

log (1− p)
.

In the work of Aramon et al. [50], p is estimated using
Bayesian inference due to their large system sizes some-
times resulting in zero successes, precluding the direct
calculation of p. In our case, to evaluate a policy, we
perform 100 runs for each of 100 instances and compute
p directly from the ratio of successful to total episodes,
that is, p = X̄.

VI. HAMILTONIANS

We present an analysis of two classes of Hamiltonians.
The first, which we call the weak-strong clusters model
(WSC; see Figure 1a), is an L = 16 bipartite graph with
two fully connected clusters, inspired by the “Chimera”
structure used in D-Wave Systems’ quantum annealing
hardware [51]. In our case, one cluster is negatively bi-
ased with hi = −0.44 and the other positively biased
with hi = 1.0. All couplings are ferromagnetic and have
unit magnitude. This results in an energy landscape with
a deep local minimum where both clusters are aligned to
their respective biases, but a slightly lower global mini-
mum when the two clusters are aligned together, sacri-
ficing the benefit of bias-alignment for the satisfaction of
the intercluster couplings. For all WSC runs, the spins
of the lattice are initialized in the local minimum.

The second class of Hamiltonians are nearest-
neighbour square spin glasses (SG; see Figure 1b). Cou-
plings are periodic (i.e., the model is defined on a torus),
and drawn from a normal distribution with standard de-
viation 1.0. All biases are zero. Hamiltonian instances
are generated as needed during training. To evaluate
our method and compare against the simulated anneal-
ing standard, we must have a testing set of instances for
which we know the true ground state. For each lattice
size investigated (

√
L = [4, 6, 8, 10, 12, 14, 16]) we gener-

ate Ntest = 100 unique instances and obtain the true
ground state energy for each instance using the branch-
and-cut method [52] through the Spin Glass Server [53].

VII. RESULTS

A. Weak-strong clusters model

We demonstrate the use of RL on the WSC model
shown in Figure 1a. RL is able to learn a simple tem-
perature schedule that anneals the WSC model to the
ground state in 100% of episodes, regardless of the tem-
perature in which the system is initialized. In Figure 3b,
we compare the RL policy to standard simulated anneal-
ing (i.e., Metropolis–Hastings) with several linear inverse
temperature schedules (i.e., constant cooling rates).

When the system is initially hot (small β), both RL
and SA are capable of reaching the ground state with
100% success as there exists sufficient thermal energy to
escape the local minimum. In Figure 3c, we plot an exam-
ple schedule. The RL policy (red) increases the temper-
ature slightly at first, but then begins to cool the system
almost immediately. An abrupt decrease in the Metropo-
lis acceptance rate is observed (Figure 3e). The blue
dashed line in Figure 3c represents the average schedule
of the RL policy over 100 independent anneals. The stan-
dard deviation is shaded. It is apparent that the schedule
is quite consistent between runs at a given starting tem-
perature, with some slight variation in the rate of cooling.

When the system is initially cold (large β), there ex-
ists insufficient thermal energy to overcome the energy
barrier between the local and global minima, and SA
fails with a constant cooling rate. The RL policy, how-
ever, is able to identify, through observation, that the
temperature is too low and can rapidly decrease β ini-
tially, heating the system to provide sufficient thermal
energy to avoid the local minimum. In Figure 3f, we
see an increase in the Metropolis acceptance ratio, fol-
lowed by a decrease, qualitatively consistent with the
human-devised heuristic schedules that have been tra-
ditionally suggested [1, 10, 11]. In Figure 3d, we plot an
example schedule. Initially, the RL algorithm increases
the temperature to provide thermal energy to escape the
minimum, then begins the process of cooling. Similar
to Figure 3c, the broadness of the variance of the poli-
cies is greatest in the cooling phase, with some instances
being cooled more rapidly than others. The RL agent
does not have access to the current temperature directly,
and bases its policy solely on the spins. The orthog-
onal unit-width convolutions provide a mechanism for
statistics over spins and replicas, and the LSTM mod-
ule provides a mechanism to capture the time-dependent
dynamics of the system.

B. Spin-glass model

We now investigate the performance of the RL algo-
rithm in learning a general policy for an entire class of
Hamiltonians, investigating whether the RL algorithm
can learn to generalize its learning to accommodate a the-
oretically infinite set of Hamiltonians of a specific class.
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variety of starting temperatures. When the initial inverse temperature is sufficiently small, both the RL and SA algorithms
achieve 100% success (i.e., every episode reaches the ground state). When the system is initialized with a large βi, there is
insufficient thermal energy for SA to overcome the energy barrier and reach the ground state, and consequently a very low
success probability. A single RL policy achieves almost perfect success across all initial temperatures. In (c) and (d), we plot
the RL inverse temperature schedule in red for episodes initialized with respective low and high inverse temperatures. In blue,
we show the average RL policy for the specific starting temperature. The RL algorithm can identify a cold initialization from
observation, and increases the temperature before then decreasing it (as shown in (d)). In (e) and (f), we plot the Metropolis
acceptance ratio for two episodes, initialized at two extreme temperatures (e) low βi, and (f) high βi.
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7

Furthermore, we investigate how RL performs with var-
ious lattice sizes, and compare the trained RL model to
a linear (with respect to β) classic simulated annealing
schedule. The results of this investigation are shown in
Figure 4.

In all cases, the RL schedule obtains a better (lower)
n99 value, meaning far fewer episodes are required for
us to be confident that the ground state has been ob-
served. Furthermore, the n99 value exhibits much better
scaling with respect to the system size (i.e., the num-
ber of optimization variables). In Figure 4e–k, we plot
some of the schedules that the RL algorithm produces.
In many cases, we see initial heating, followed by cooling,
although in the case of the L = 162 model (Figure 4k) we
see much more complex, but still successful, behaviour.
In all cases, the variance of the policies with respect to
time (shown as the shaded regions in Figure 4e-k), in-
dicate the agent is using information from the provided
state to make decisions, and not just basing its decisions
on the elapsed time using the internal state of the LSTM
module. If schedules were based purely on some inter-
nal representation of time, there would be no variance
between episodes.

C. Destructive observation

A key element of the nature of quantum systems is
the collapse of the wavefunction when a measurement of
the quantum state is made. When dealing with quantum
systems, one must make control decisions based on quan-
tum states that have evolved through an identical policy
but have never before been measured. We model this
restriction on quantum measurements by allowing any
replica observed in the anneal to be consumed as train-
ing data for the RL algorithm only once. We simulate
this behaviour by keeping track of the policy decisions
(the changes in inverse temperature) in an action buffer
as we play through each episode. When a set of Nreps

replicas are measured, they are consumed and the sys-
tem is reinitialized. The actions held in the buffer are
replayed on the new replicas.

In this situation, the agent cannot base its decision on
any replica-specific temporal correlations between given
measurements; this should not be a problem early in each
episode, as the correlation time scale of a hot system is
very short, and the system, even under nondestructive
observation, would have evolved sufficiently, in the time
window between steps, to be uncorrelated. However,
as the system cools, the correlation time scale increases
exponentially, and destructive observation prevents the
agent from relying on temporal correlations of any given
replica.

We evaluate an agent trained in this “quantum-
inspired” way and plot its performance alongside the non-
destructive (i.e., classical) case in Figure 4d. In the case
of destructive observation, the agent performs marginally
less well than the nondestructive case, but still performs

better than SA in most cases. As it is a more complicated
task to make observations when the system is temporally
uncorrelated, it is understandable that the performance
would be inferior to the nondestructive case. Nonethe-
less, RL is capable of outperforming SA in both the de-
structive and nondestructive cases.

The relative performance in terms of computational
demand between destructive observation and SA alludes
to an important future direction in the field of RL, espe-
cially when applied to physical systems where observa-
tion is destructive, costly, and altogether difficult. With
destructive observations, Nsteps systems must be initial-
ized and then evolved together under the same policy.
Each copy is consumed one by one, as observations are re-
quired for decision making, thus incurring an unavoidable
N2

steps/2 penalty in the destructive case. In this sense, it
is difficult to consider RL to be superior; prescheduled
SA simply does not require observation. However, if the
choice to observe were to be incorporated into the action
set of the RL algorithm, the agent would choose when
observation would be necessary.

For example, in the systems presented in this work,
the correlation time of the observations is initially small;
the temperatures are high, and frequent observations are
required to guide the system through phase space. As
the system cools, however, the correlation time grows
exponentially, and the observations become much more
similar to each previous observation; in this case, it would
be beneficial to forgo some expensive observations, as the
system would not be evolving substantially. With such a
scheme, RL stands a better chance at achieving greater
performance.

D. Policy analysis

To glean some understanding into what the RL agent
is learning, we train an additional model on a well-
understood Hamiltonian, the ferromagnetic Ising model
of size 16 × 16. In this case, the temperatures are ini-
tialized randomly (as in the WSC model). This model is
the extreme case of a spin glass, with all Jij = 1. In Fig-
ure 5a, we display the density of states g(M,E) of the
Ising model, plotted in phase space, with axes of mag-
netization per spin (M/L) and energy per spin (E/L).
The density of states is greatest in the high-entropy
M = E = 0 region, and lowest in the low-entropy “cor-
ners”. We show the spin configurations at the three cor-
ners (“checkerboard”, spin-up, and spin-down) for clar-
ity. The density of states is obtained numerically using
Wang–Landau sampling [54]. Magnetization and energy
combinations outside of the dashed “triangle” are impos-
sible.

In Figure 5b, we plot a histogram of the average value
function V (st) on the phase plane, as well as three tra-
jectories. Note that since each observation st is com-
posed of Nreps replicas, we count each observation as
Nreps separate points on the phase plot when comput-
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FIG. 5. We train an agent on a special case of the spin-glass Hamiltonians: the 16 × 16 ferromagnetic Ising model where
all couplings Jij = 1. (a) We plot the density of states log(g(M,E)) for the 16 × 16 Ising model in the phase space of energy
and magnetization, sampled numerically using the Wang–Landau algorithm [54], and indicate four of the novel high- and low-
energy spin configurations on a grid. (b) For the trained model, we plot the average of the learned value function V (st) for each
possible energy–magnetization pair. Additionally, we plot the trajectories of the first replica for three episodes of annealing to
demonstrate the path through phase space the algorithm learns to take. In (c) and (d), we enlarge two high-value regions of
interest. In (e), we plot the average action taken at each point in phase space, as well as the same two trajectories plotted in
(b).

ing the histogram, each with an identical contribution
of V (st) to the average. As expected, the learned value
function trends higher toward the two global energy min-
ima. The lowest values are present in the initialization
region (the high-energy band along the top). We expand
two regions of interest in Figure 5c–d. In Figure 5d, we
can see that the global minimum is assigned the highest
value; this is justifiable in that if the agent reaches this
point, it is likely to remain here and reap a high reward
so long as the agent keeps the temperature low for the
remainder of the episode.

In Figure 5c, we identify four noteworthy energy–
magnetization combinations, using asterisks. These four
energy–magnetization combinations have identical ener-
gies, with increasing magnetization, and correspond to
banded spin structures of decreasing width (four exam-
ple spin configurations are shown). The agent learns to
assign a higher value to the higher-magnetization struc-
tures, even though the energy, which is the true measure
of “success”, is identical. This is because the higher-
magnetization bands are closer to the right-most global
minimum in action space, that is, the agent can traverse
from the small-band configuration to the ground state
in fewer spin flips than if traversing from the wide-band
configurations.

In Figure 5e, we plot a histogram of the average action
taken at each point in phase space. The upper high-
energy band exhibits more randomness in the actions
chosen, as this is the region in which the system lands
upon initialization. When initialized, the temperature
is at a randomly drawn value, and sometimes the agent
must first heat the system to escape a local minimum be-
fore then cooling, and thus the first action is, on average,

of very low magnitude. As the agent progresses toward
the minimum, the agent becomes more aggressive in cool-
ing the system, thereby thermally trapping itself in lower
energy states.

VIII. CONCLUSION

In this work, we show that reinforcement learning is a
viable method for learning dynamic control schemes for
the task of simulated annealing (SA). We show that, on
a simple spin model, a reinforcement learning (RL) agent
is capable of devising a temperature control scheme that
can consistently escape a local minimum, and then anneal
to the ground state. It arrives at a policy that general-
izes to a range of initialization temperatures; in all cases,
it learns to cool the system. However, if the initial tem-
perature is too low, the RL agent learns to first increase
the temperature to provide sufficient thermal energy to
escape the local minimum.

We then demonstrate that the RL agent is capable of
learning a policy that can generalize to an entire class
of Hamiltonians, and that the problem need not be re-
stricted to a single set of couplings. By training multiple
RL agents on increasing numbers of variables (increasing
lattice sizes), we investigate the scaling of the RL algo-
rithm and find that it outperforms a linear SA schedule
both in absolute terms and in terms of its scaling.

We analyze the value function that the agent learns
and see that it attributes an intuitive representation of
value to specific regions of phase space.

We discuss the nature of RL in the physical sciences,
specifically in situations where observing systems is de-
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structive (“destructive observation”) or costly (e.g., per-
forming quantum computations where observations col-
lapse the wavefunction, or conducting chemical analysis
techniques that destroy a sample material). We demon-
strate that our implementation of RL is capable of per-
forming well in a destructive observation situation, al-
beit inefficiently. We propose that the future of physi-
cal RL (i.e., RL in the physical sciences) will be one of
“controlled observation”, where the algorithm can choose
when an observation is necessary, minimizing the inher-

ent costs incurred when observations are expensive, slow,
or difficult.
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