
ar
X

iv
:1

90
6.

02
22

9v
2

 [
qu

an
t-

ph
]

 1
8

O
ct

 2
01

9

Quantum Algorithms for Solving Dynamic Programming Problems

Pooya RonaghB

Institute for Quantum Computing, Waterloo, ON
Department of Physics and Astronomy, University of Waterloo, Waterloo, ON

1QB Information Technologies (1QBit), Vancouver, BC
(Dated: October 21, 2019)

We present a general quantum algorithm for solving finite-horizon dynamic programming
problems. Up to polylogarithmic factors, our algorithm provides a quadratic quantum ad-
vantage in terms of the number of states of a given dynamic programming problem. This
speedup comes at the expense of the appearance of other polynomial factors representative
of the number of actions of the dynamic programming problem, the maximum value of the
instantaneous reward, and the time horizon of the problem. Our algorithm can be applied
to combinatorial optimization problems solved classically using dynamic programming tech-
niques. As one application, we show that the travelling salesperson problem can be solved in
O∗

(
⌈c⌉4

√
2n
)
on a quantum computer, where n is the number of vertices of the underlying

graph and ⌈c⌉ is its maximum edge-weight. As another example, we show that the minimum
set-cover problem can be solved in O

(√
2n poly(m,n)

)
, where m is the number of sets used

to cover a universe of size n. Finally, we prove lower bounds for the query complexity of
quantum algorithms and classical randomized algorithms for solving dynamic programming
problems, and show that no greater-than-quadratic speedup in either the number of states
or number of actions can be achieved for solving dynamic programming problems using
quantum algorithms.

Contents

I. Introduction 2
A. Dynamic programming problems 2
B. Quantum algorithms for mathematical programming 2
C. Summary of results 3
D. Organization 5

II. The multiplicative weights update method 5

III. Solving dynamic programming problems 9
A. Dual formulation 10

1. Basic feasible solutions 11
2. Complementary slackness 12

B. Applying the multiplicative weights update method 13
C. Construction of the oracles 15
D. Example: Travelling salesperson problem 17
E. Example: Minimum cover-set problem 19

IV. Quantum complexity lower bound 20

V. Classical complexity lower bound 21

B pooya.ronagh@uwaterloo.ca

http://arxiv.org/abs/1906.02229v2
mailto:pooya.ronagh@uwaterloo.ca

2

VI. Conclusion 23

VII. Acknowledgement 24

References 24

I. Introduction

A. Dynamic programming problems

Recently, there has been increasing interest in the construction of quantum algorithms for solv-
ing optimal control problems. This includes algorithms for finite-horizon dynamic program-
ming [MGAG16, MLM17, ABI+19] and infinite-horizon reinforcement learning (RL) [DCT+08,
BC12, CLG+18]. Ambainis et al. [ABI+19], in particular, study quantum algorithms for a col-
lection of NP-hard problems (e.g., the travelling salesperson problem and the minimum set-cover
problem) for which the best classical algorithms are exponentially expensive dynamic program-
ming solutions. Achieving a quantum advantage over classical dynamic programming algorithms
has been a long-standing problem in quantum algorithms, for which [ABI+19] improved the time
complexity of solving these problems from O∗(2n) to O∗(1.728n).1 While these results leave it
open as to whether a quadratic quantum speedup for solving dynamic programming problems (DP)
is feasible, they also require exponentially large space, as they need to store a partial dynamic
programming table. Achieving a quadratic quantum speedup for solving DPs has remained an
open challenge, until now.

In this paper, we introduce quantum algorithms for dynamic programming that conquer this chal-
lenge. In the most general terms, a DP is defined by a finite set of states S and a finite set of
possible actions (decisions) A at each state. Performing an action at a given state results in a
cost or reward and a transition to a new state. The goal is therefore to find an optimal policy
for an action of an agent at every state. Here, the measure of optimality is the future reward
the agent collects should she pursue the action prescribed by the optimal policy. The cumulative
future reward is often called the value function. A policy consists of the choice of a single action
at every state. If these prescribed actions are independent of the point in time the agent visits a
state, the policy is called homogeneous. As such, a homogeneous (deterministic) policy is a function
π : S → A. In this paper, a DP is defined as the problem of finding an optimal action at a given
state s0 ∈ S and time t = 0. An algorithm that solves this problem can then iteratively be used at
every subsequent state visited by the agent until a complete optimal policy for the DP has been
traversed.

B. Quantum algorithms for mathematical programming

In recent works by Brandão and Svore; Brandão et al.; van Apeldoorn, Gilyén, Gribling, and
de Wolf; and van Apeldoorn and Gilyén [BS17, KLL+19, AGGW17, AG18]; quantum Gibbs sam-
pling has been used to achieve a quadratic speedup in solving semidefinite programming prob-
lems (SDP) and, as a special case, linear programming problems (LP). The quadratic speedup

1 Here, the O
∗ notation ignores polynomial factors in n.

3

is in terms of the parameters that define the size of the problem (the number of variables and
constraints). This speedup comes at the expense of much worse scaling in terms of the precision of
the solution. For example, van Apeldoorn et al. [AGGW17] propose a quantum algorithm for LPs
that requires Õ(ε−5) quantum gates, and an algorithm for SDPs that requires Õ(ε−8) quantum
gates, where ε is an additive error on the accuracy of the final solution. Van Apeldoorn and Gilyén
improve upon the scaling of their result by further analysis and reduce the dependence on precision
parameters to Õ(ε−4) in [AG18] and more recently to Õ(ε−3.5) in [AG19]. Several lower bounds
proven in [AGGW17, AG18] suggest that these results cannot be improved significantly further,
in particular, in that the computational complexity found is tight with respect to the size of the
SDP, and the polynomial dependence on precision parameters is inevitable. It therefore appears
that there might be a regime of parameters in which if a real-world problem falls, these quantum
algorithms could be of practical advantage. The mentioned references leave open the question of
finding real-world applications of LPs and SDPs that fall into this regime.

In this paper, we consider the LP formulations of DPs. As will become apparent, the conditions
assumed for the quantum LP and SDP solvers of the earlier work referenced above are too strong,
and thus cannot be used as off-the-shelf optimizers for the LP formulation of DPs. For instance, in
working with DPs, it is crucial to modify the conventional formulation and, moreover, to consider
its dual. Further, the error introduced in the objective value itself can be very large and, therefore,
we study the basic feasible solutions and use complementary slackness to find an optimal action
given the approximation we receive for the optimal dual solution. Nevertheless, we use the meta-
algorithm known as the multiplicative weights update method (MWUM) on our feasibility problem.
MWUM, in turn, creates simpler LPs defined on a simplex. We then use the quantum minimum
finding algorithm [DH96] to solve them. It is worth mentioning that [BS17, KLL+19, AGGW17,
AG18] also use (a matrix generalization of) MWUM [AK07]. However, unlike in these references, in
our method the slave problems generated by MWUM are simpler and can be solved by the quantum
minimum finding algorithm rather than having to resort to using a quantum Gibbs sampler.

C. Summary of results

We consider a finite-horizon DP with a finite space of states S and a finite space of actions A. An
integer T ∈ N denotes the time horizon of the problem, which is the total duration allowed for a
policy to achieve maximum utility. We consider a value function

V = V (π, s) : Π× S → R.

Here, Π denotes the space of all deterministic policies defined along the finite time horizon. For
time-homogeneous policies, Π = AS is the space of all functions S → A, and for inhomogeneous
policies, Π = AS×{0,...,T−1}. We assume that a marked initial state s0 ∈ S is given. The goal is to
find an optimal policy at s0, that is,

argmaxπ V (π, s0) .

It is easy to verify through Bellman’s recursion [Bel13] that, if the optimal value function
V ∗ = V (π∗,−) is known at all states s ∈ S accessible from s0, then an optimal action at s0
can be extracted from the optimal value function. Alternatively, an optimizer of V ∗, that is, the
s0 component of an optimal policy, may be directly calculated. In this paper, we use the latter

4

approach.

We show that for a finite-horizon dynamic programming problem with a time horizon T , there exists

a quantum algorithm that finds an optimal action at a given state s0 ∈ S in Õ
(
|A|4.5ρ4

√
|S|T

)
.

We can see that this scaling is not ideal in terms of the number of actions |A|, but is quadratically
faster than expected in terms of the number of states |S|. In fact, for practical applications the
number of possible states is often exponentially large with respect to the length of the input string
defining the problem, but the number of actions is a polynomial of it. Therefore, achieving a
quadratic speedup in |S| at the expense of having a poor polynomial scaling in |A| is very valuable.
We verify this fact when we apply our algorithm to the travelling salesperson problem (TSP) and
the minimum set-cover problem (MSC). In the TSP, the state space corresponds to all possible
subsets of the vertices of the graph, paired with a marked vertex in the subset, but the number of
actions is at most equal to the number of vertices in the graph. In MSC, the states correspond to
subsets of the family of sets forming a cover for the universe, whereas the dynamic programming
formulation requires a constant number of actions, namely, two of them, representative of the
inclusion and the exclusion of a subsequent set.

The factor ρ is a representative of the precision in which the reward structure of the DP is defined.
For simplicity, we assume that the instantaneous rewards are positive integers. In this scenario,
ρ is the upper bound on the total reward function over the time horizon T . If the instantaneous
reward is bounded above by an integer ⌈r⌉, then ρ = O(⌈r⌉T).
Our quantum algorithm makes coherent queries to the oracle

|s〉 |a〉 |x〉 |y〉 7→ |s〉 |a〉 |x⊕ a(s)〉 |y ⊕ r(s, a)〉 .

Therefore, our algorithm achieves an Õ(
√
S) gate count with respect to the number of states of

the DP, provided that the oracle defining the transitions of the states under each action a : S → S
has an efficient description (i.e., it uses polylogarithmic numbers of qubits and gates in terms of
|S| and |A|). Moreover, our quantum algorithm uses a polylogarithmic number of qubits in terms
of |S|, |A|, and T , and is therefore space-efficient.

As practical applications, we show how our algorithm can be applied to solving various combina-
torial optimization problem. We consider the TSP and MSC as two examples.

The TSP is the problem of finding an optimal tour between vertices of a graph. We consider n
vertices with a cost of cij for travelling from vertex i to vertex j, where all cij are bounded above
by an integer ⌈c⌉ > 0. We follow the Bellman–Held–Karp [Bel61, HK62] formulation of the TSP as
a DP in which the states are defined by (S, i) where i is a vertex and S ⊆ {1, . . . , n} is a subset of
the vertices. An oracle like the one above can be constructed for this problem using Õ(n2) registers
that are prepared in cij . In Section IIID, we show that our algorithm can solve this problem using
O∗
(
⌈c⌉4

√
2n
)
quantum gates, which is, to the best of our knowledge, the first quantum algorithm

to provide a quadratic speedup in solving the TSP. Of course, this speedup comes at the expense
of a polynomial (quartic) dependence on the maximum edge-weight ⌈c⌉.
In MSC, a set called the universe comprises n elements, and m subsets of it are given. The task
is to find the minimum number of these subsets required for covering the entire universe. In our
DP formulation, an ordering of the mentioned subsets is fixed. The states of DP then correspond
to various choices of a fraction of these subsets. The (only two) actions correspond to inclusion
or exclusion of the subsequent subset as we proceed along the ordering. In Section IIIE, we
show that there exists a quantum algorithm for MSC that can be implemented on a circuit with
O
(√

2n poly(m,n)
)
quantum gates acting on O(mn) qubits.

5

Quantum lower bound Quantum upper bound Classical lower bound

Query complexity Ω(
√

|S||A|) Õ
(
|A|4.5ρ4

√
|S|T

)
Ω(|S||A|)

TABLE I. Summary of main results

We also report on the classical and quantum query complexity lower bounds for solving DPs using
the oracle defined above. We first provide the quantum query complexity lower bound of solving
DPs using the generalized relational adversary method of [Amb02] (Section IV). We find a lower
bound Ω(

√
|S||A|) for finite-horizon problems so long as T = Ω(log(|S|)). This demonstrates that

our quantum algorithm is optimal in |S| but the dependence on other factors (|A| and ρ) may
perhaps be improved. In particular, we rule out the possibility of achieving exponential speedups
in solving DPs.

Lastly, in Section V, we use ideas from the relational adversary method of [Amb02], but applied in
the classical query complexity setting to prove lower bounds on the query complexity of classical
bounded-error randomized algorithms that solve DPs. The oracles are similar to the ones considered
in the quantum algorithms but queried classically:

(s, a) 7→ (a(s), r(s, a)) .

We obtain the lower bound of Ω(|S||A|), thereby proving the existence of a polynomial separation
between the quantum algorithm proposed in this paper and the best possible classical randomized
algorithms for the same problem, with respect to |S|.

D. Organization

The paper is organized as follows. In Section II, we provide an introduction to the multiplicative-
weights update method. In Section III, we propose and analyze our quantum algorithm for solving
finite-horizon DPs. In the same section, as concrete applications, we show how our quantum
algorithm achieves an almost quadratic speedup in solving the both the TSP and the minimum
set-cover problem. In Section IV, we prove a lower bound on the quantum query complexity
of solving DPs and, finally, in Section V, we prove a lower bound for the classical randomized
algorithms accomplishing the same task. Consequently, this completes the proof that our method
for solving DPs demonstrates a quantum advantage.

II. The multiplicative weights update method

We refer the reader to [Kal07] for an introduction to the multiplicative weights update method
(MWUM). For convenience, we show the application of MWUM in solving linear feasibility prob-
lems.

Following [Kal07], we first present a general statement of MWUM. Given n experts and T iterations,
every expert recommends a course of action. We are expected to make decisions about actions
based on experts’ recommendations and the cost of each action. In the early iterations of decision
making, the näıve strategy is to pick an expert uniformly at random. The expected cost will be that

6

of the “average” expert. In later iterations, we may observe that some experts clearly outperform
others. We may, therefore, choose to reward those experts by increasing the probability of their
being selected in following rounds. As will be made apparent in what follows, this revision of
strategy is exactly the multiplicative weights update rule.

Let p(t) be the distribution from which we select the experts at iteration t ≤ T . We now select expert
i ∈ {1, . . . , n} according to this distribution. At this point, the costs of the actions recommended
by the experts are obtained from the environment in the form of a vector m(t). We assume that
all entries of m(t) are in the range [−1, 1].

The Generic Multiplicative Weights Algorithm

Input: ε ≤ 1
2 .

Initialize: t = 1 and w
(t)
i = 1 for all i.

For t = 1, 2, . . . , T

1. Choose an expert i with a probability proportional to her weight, i.e., with probability

p
(t)
i = w

(t)
i /

∑
i w

(t)
i .

2. Obtain the t-th iteration cost vector m(t).

3. Update the selection weights of experts via

w
(t+1)
i = w

(t)
i (1− εm

(t)
i) for all i. (1)

Theorem II.1. For every expert i, the above algorithm guarantees that, after T iterations, we
have

T∑

t=1

m(t) · p(t) ≤
T∑

t=1

m
(t)
i + ε

T∑

t=1

|m(t)
i |+ lnn

ε
.

We note that the left-hand side of the inequality represents the expected cost of the experts over
T rounds and the right-hand side is an upper bound on the cost of the i-th expert.

Proof. The proof given in [Kal07, Theorem 2] goes as follows. Let Φ(t) =
∑

iw
(t)
i . Asm

(t)
i ∈ [−1, 1],

we have

Φ(t+1) =
∑

i

w
(t+1)
i =

∑

i

w
(t)
i (1− εm

(t)
i)

= Φ(t) − εΦ(t)
∑

i

m
(t)
i p

(t)
i = Φ(t)(1− εm(t).p(t))

≤ Φ(t) exp(−εm(t).p(t)) .

By induction,

Φ(T+1) ≤ Φ(1) exp

(
−ε

T∑

t=1

m(t).p(t)

)
= n exp

(
−ε

T∑

t=1

m(t).p(t)

)
.

7

On the other hand,

Φ(T+1) ≥ w
(T+1)
i =

T∏

t=1

(1−m
(t)
i ε).

The result then follows by taking the logarithms of both sides of the above two inequalities and

using ln
(

1
1−ε

)
≤ ε+ ε2.

The application of MWUM in which we are interested is solving linear feasibility problems. Let P
be a convex set in R

n, A be an s × n matrix, and x ∈ R
n. We wish to check the feasibility of the

convex program

Ax ≥ b (2)

s.t. x ∈ P .

Let δ > 0 be an error parameter and, for every i ∈ {1, . . . , s}, let Ai be the i-th row of A and bi the
i-th entry of b. We aim to design an algorithm which either solves the problem up to the additive
error of δ, that is, finds x ∈ P such that

Aix ≥ bi − δ for all i ,

or proves that the system is infeasible. We also assume that there exists an algorithm Q which we
treat as a black box that, given a probability distribution vector p on the s constraints, solves the
feasibility problem

pTAx ≥ pT b (3)

s.t. x ∈ P .

The feasibility problem (3) is a Lagrangian relaxation of (2) and, therefore, we may find it easier
to solve in certain situations. In particular, a solution x∗ for (2) satisfies (3) for every choice of
probability distribution p. Equivalently, a probability distribution p for which (3) is infeasible is a
proof that the original problem (2) is infeasible.

Let ℓ ≥ 0 be a bound on the absolute value of all slacks in (2). More precisely, we assume that
whenever the black box returns a point x ∈ P, then

Aix− bi ∈ [−ℓ, ℓ] for all i .

A slight simplification of [Kal07, Theorem 5] follows.

Theorem II.2. Let δ > 0 be a given error parameter. Assume that ℓ ≥ δ
2 . Then, there is an

algorithm which either solves the feasibility problem (2) up to an additive error of δ, or correctly

concludes that the system is infeasible, and makes only O
(
ℓ2 log(s)

δ2

)
calls to a subprocedure Q, with

an additional processing time of O(s) per call.

Proof. We associate an expert to each of the s constraints.The i-th cost is given bymi =
1
ℓ
(Aix− bi),

thus satisfying −1 ≤ mi ≤ 1. At each iteration t, given a distribution p(t) over the experts, we run
the subprocedure Q with p(t). If the subprocedure declares that there is no x ∈ P that satisfies

8

p(t)Ax ≥ p(t)b, then we halt. This is because p(t) is a proof that the problem (2) is infeasible.
Otherwise, let x(t) be the solution returned by the subprocedure Q:

p(t)
T

Ax(t) ≥ p(t)
T

b .

We set the cost vector to m(t) := 1
ℓ

(
Ax(t) − b

)
, resulting in a non-negative expected value for the

cost in each iteration:

p(t) ·m(t) =
1

ℓ
p(t) ·

(
Ax(t) − b

)
=

1

ℓ

(
p(t)

T

Ax− p(t)
T

b
)
≥ 0.

By Theorem II.1, after T iterations, we have

0 ≤
T∑

t=1

1

ℓ

(
Aix

(t) − bi

)
+ ε

T∑

t=1

1

ℓ
|Aix

(t) − bi|+
ln s

ε

= (1 + ε)
T∑

t=1

1

ℓ

(
Aix

(t) − bi

)
+ 2ε

∑

<0

1

ℓ
|Aix

(t) − bi|+
ln s

ε

≤ (1 + ε)

T∑

t=1

1

ℓ

(
Aix

(t) − bi

)
+

2εℓ

ℓ
T +

ln s

ε
.

The subscript “< 0” in the above equations refers to the iterations t for which Aix
(t) − bi < 0.

Since P is convex, x̄ = 1
T

∑T
t=1 x

(t) is in P and

0 ≤ (1 + ε) (Aix̄− bi) + 2εℓ+
ℓ ln(s)

εT
.

Now, setting ε = δ
4ℓ and T = ⌈8ℓ2 ln(s)

δ2
⌉, we obtain Aix̄ ≥ bi − δ.

Remark 1. The additional processing time of O(s) in this theorem is due to the processing step (3)

in the pseudocode presented in this section. In our usage of MWUM, the multiplicative weights w
(t)
i

are calculated and recalculated coherently in each step, thereby avoiding the additional complexity
of O(s).

In our usage of MWUM, the subprocedure Q is a quantum algorithm that efficiently solves the
Lagrangian relaxation (3). In fact, the quantum algorithm can solve the feasibility problem only
up to a given precision. Therefore, a variant of Theorem II.2 for approximate subprocedures is
useful and stated as [Kal07, Theorem 7]. We call the subprocedure Q δ-approximate if it solves
the feasibility problem (3) up to an additive error of δ. That is, given the probability distribution
p, it either finds x ∈ P such that pTAx ≥ pT b− δ or it declares correctly that (3) is infeasible.

Theorem II.3. Let δ > 0 be a given precision parameter. Assume that ℓ ≥ δ
3 . Then, there

is an algorithm which either solves the feasibility problem (2) up to an additive error of δ, or

correctly concludes that the system is infeasible, making only O
(
ℓ2 log(s)

δ2

)
calls to a δ-approximate

subprocedure Q.

Proof. The proof is similar to that of the previous theorem, but this time setting ε = δ
6ℓ and

T = ⌈18ℓ2 ln(s)
δ2

⌉ following [Kal07, Theorem 7].

9

III. Solving dynamic programming problems

We solve the DP using MWUM. We define the value function as

V (π, s) = V0(π, s) =

T−1∑

i=0

ri(si, ai) ,

and aim to find a deterministic, time-dependent policy πt : S → A that maximizes V . Here, T is
the time horizon of the DP and, for convenience, we use the notation [T] := {0, . . . , T − 1}. The
following structure is given:

(a) S and A are finite sets, and the transition kernel or law of motion is at : S → S;

(b) The reward function is a bounded, deterministic, possibly time-dependent function of
states, actions, and time epochs, and for simplicity takes values in the set of natural numbers

rt = rt(s, a) : S ×A → N , ∀ t ∈ [T] .

The boundedness condition allows us to define a positive integer denoted by ⌈r⌉ > 0 as an
upper bound on reward values. Note that, without loss of generality (and by a constant
shift of all rewards if needed), we assume a lower bound of 1 for the reward function.

Notice that by the above definition of the reward function, we have implicitly assumed all actions
in set A are admissible for all states in S. For a DP in which this condition is not naturally
satisfied by the model (i.e., some actions are not allowed at certain states), we may, without loss of
generality, let an originally inadmissible action a at a state s map it with a null state additionally
defined.

Bellman’s optimality criteria for the value function states that an optimal policy π∗
t : S → A is

associated to the (unique) optimal value function V ∗
t (s) = Vt(π

∗
t , s) satisfying

V ∗
t (s) = max

a

{
rt(s, a) + V ∗

t+1(a(s))
}

∀ t ∈ [T] .

We can write a linear program, the solution of which provides a solution to the above functional
equation. The value function depends on the time epochs t ∈ {0, . . . , T} and states s ∈ S. For
each value V ∗

t (s) of the value function, we assign a real variable vs,t and, for consistency, write the
constants rt(s, a) as rs,a,t. The LP formulation is as follows.

min
∑

s,t

vs,t

s.t. vs,t ≥ rs,a,t + va(s),t+1 ∀ a ∈ A, s ∈ S, t ∈ [T]

vs,t ≥ 0 ∀s ∈ S, t ∈ {0, . . . , T}

(4)

The following properties are easy to verify.

Proposition III.1. The above LP is feasible and attains a unique solution.

10

In this unique solution, vs,T = 0 for all s ∈ S. In what follows, we remove vs,T from the set of
variables and treat them as the constant 0 when they appear in the constraints.

Proposition III.2. All optimal values are integers bounded below by T − t at time t. The optimal
objective value

∑
vs,t is bounded below by |S|

(
T
2

)
.

Proposition III.3. All optimal values are integers bounded above by (T − t)⌈r⌉ at time t. The
optimal objective value

∑
vs,t is bounded above by |S|

(
T
2

)
⌈r⌉.

Remark 2. At time T , the total amount of reward that has been possibly collected by any policy is
bounded above by T ⌈r⌉. In fact, we will use the notation ρ for the maximum cumulative optimal
reward obtained by an optimal policy, starting from the marked initial state s0. We note that this
quantity is bounded above by T ⌈r⌉, so in the computational complexity results presented below,
the term ρ can be replaced by T ⌈r⌉ when a better bound for it is not available.

A. Dual formulation

Recall that the complexities presented in Theorem II.2 and Theorem II.3 depend on the bounds on
each feasibility slack. Consequently, the upper bound for the objective function of (4) presented
in Proposition III.3 would become an issue if we were to attempt to solve this LP using MWUM.
On the other hand, the LP formulation (4) finds the optimal value function for every initial state
s ∈ S. Our trick for overcoming this issue is to instead assume a marked initial state s0 and solve
the LP to find only the optimal value function at that state. This LP automatically finds the
optimal value function at all states reachable from s0 as well, while avoiding the appearance of
large slacks.

min vs0,0

s.t. vs,t ≥ rs,a,t + va(s),t+1 ∀ a ∈ A, s ∈ S, t ∈ [T]

vs,t ≥ 0 ∀ s ∈ S, t ∈ [T]

(5)

To use the MWUM of Theorem II.3, we pass from (5) to the feasibility problem

vs0,0 = σ

vs,t − rs,a,t − va(s),t+1 ≥ 0 ∀ s ∈ S, a ∈ A, t ∈ [T]

vs,t ≥ 0 ∀ s ∈ S, t ∈ [T] ,

(6)

with the intention of performing a binary search on the value of σ. However, this feasibility problem
is not easier to solve using a quantum algorithm. Instead, we form the linear programming dual
of (5), which may be written as

max
∑

s,a,t

rs,a,tλs,a,t

s.t. 1−
∑

a

λs0,a,0 ≥ 0

−
∑

a

λs,a,t +
∑

s,a
a(s)=s

λs,a,t−1 ≥ 0 ∀ (s, t) ∈ S × [T] \ {(s0, 0)}

λs,a,t ≥ 0 ∀ a ∈ A, s ∈ S, t ∈ [T] ,

(DP)

11

wherein the dual variables are indexed by the primal constraints and thus denoted by λs,a,t.

By strong duality for linear programming, the optimal value of (DP) coincides with that of (5).
So, we may perform a binary search on σ ∈ [1, ρ] in pursuit of the optimal objective value of (DP).
That is, for a given value of σ ∈ [1, ρ], we define Pσ as the simplex cut out in the non-negative
orthant (λ ≥ 0) by

∑
s,a,t rs,a,tλs,a,t = σ. We therefore want to solve the feasibility problem

1−
∑

a

λs0,a,0 ≥ 0

−
∑

a

λs,a,t +
∑

s,a
a(s)=s

λs,a,t−1 ≥ 0 ∀ (s, t) ∈ S × [T] \ {(s0, 0)}

s.t. λs,a,t ∈ Pσ .

(DPσ)

It turns out that we can solve this feasibility problem only δ-approximately. Therefore, it is useful
to also introduce the LP

max
∑

s,a,t

rs,a,tλs,a,t

s.t. 1−
∑

a

λs0,a,0 ≥ −δ

−
∑

a

λs,a,t +
∑

s,a
a(s)=s

λs,a,t−1 ≥ −δ ∀ (s, t) ∈ S × [T] \ {(s0, 0)}

λs,a,t ≥ 0 ∀ a ∈ A, s ∈ S, t ∈ {0, . . . , T − 1} ,

(DPδ)

and its feasibility variant

1−
∑

a

λs0,a,0 ≥ −δ ,

−
∑

a

λs,a,t +
∑

s,a
a(s)=s

λs,a,t−1 ≥ −δ ∀ (s, t) ∈ S × [T] \ {(s0, 0)}

s.t. λs,a,t ∈ Pσ .

(DPδ
σ)

We now study some properties of this LP that will be useful in proving Theorem III.5.

1. Basic feasible solutions

Let the constraints in (DP) be written as a system of linear equations with the addition of the
slack variables η = (ηs,t) ≥ 0 as

(
A | I

)(λ
η

)
= b ,

where A = AS×T,S×A×T is the matrix with entries A(s,t),(s,a,t) = δs,sδt,t−δs,a(s)δt,t+1 and b = bS×T,1

is the column matrix with entries b(s,t) = δs,s0δt,0.

12

From the basics of linear programming, we know that the properties of the LP (e.g., optimal solu-
tions) may be studied by considering the basic feasible solutions as follows. Let B be a choice of ba-
sis from Ã = (A | I). The columns of B are indexed by J⊔H, where J = {(s1, a1, t1), . . . , (sk, ak, tk)}
and H = {(s1, t1), . . . , (sℓ, tℓ)} such that k + ℓ = |S × T |. We let H̄ denote the complement of H
in S × T . Then, B can be partitioned as

B =

(
BHJ BHH

BH̄J BH̄H

)
=

(
BHJ I
BH̄J 0

)
.

B is invertible whenever BH̄J is invertible, and the inverse is of the form

C =

(
0 CJH̄

I CHH̄

)

such that CJH̄ = B−1
H̄J

and CHH̄ = −BHJCJH̄ . The associated basic feasible solution is given by

(
λJ

ηH

)
= B−1b =

(
0 CJH̄

I CHH̄

)(
bH
bH̄

)
=

(
B−1

H̄J
bH̄

bH −BHJB
−1
H̄J

bH̄

)
.

2. Complementary slackness

For every error vector δ ≥ 0, the dual of (DPδ) is of the form

min vs0,0 +
∑

δs,tvs,t

s.t. vs,t ≥ rs,a,t + va(s),t+1 ∀ a ∈ A, s ∈ S, t ∈ [T] ,
(7)

which is identical to (5) at δ = 0. By Proposition III.2, all v∗s,t are strictly positive and therefore

complementary slackness implies that, for any optimal solution of (DPδ), all constraints are binding.
As a result, for every basic feasible solution that is a candidate for optimality, the set H in the
notation of the previous section is empty and H̄ is the entire S × [T]. In what follows, a basic
matrix BJH̄ will be denoted simply by BJ when H̄ = S × [T].

On the other hand, for any optimal action a ∈ A at state s0, the constraint vs0,0 ≥ rs,a,t+va(s0),1 is
binding. Therefore, λ∗

s0,a,0 can only be nonzero for optimal a ∈ A. The fact that 1−∑a λs0,a,0 ≥ −δ
is also binding implies that not all λ∗

s0,a,0 can be zero simultaneously. In fact, for any choice of
δ ≥ 0, any optimal solution λ∗ attains at least one component (s0, a, 0) at which

λ∗
s0,a,0 ≥

1

|A| .

We conclude that an optimal a ∈ A at s0 can be found by finding any a ∈ A for which λs0,a,0 6= 0.
Moreover, for a 1

2|A| -approximation of λ∗, it suffices to find an a ∈ A such that λs0,a,0 ≥ 1
2|A| .

13

B. Applying the multiplicative weights update method

Following Section II, we form the Lagrangian relaxation of (DPσ) given a choice of Lagrange
multipliers w = (ws,t):

ws0,0

(
1−

∑

a

λs0,a,0

)
+
∑

s,t

ws,t


−

∑

a

λs,a,t +
∑

s,a
a(s)=s

λs,a,t−1


 ≥ −δ

s.t. λs,a,t ∈ Pσ .

(Lδ
σ,w)

To find a feasible solution to this problem, it suffices to show that the optimal value of

max ws0,0

(
1−

∑

a

λs0,a,0

)
+
∑

s,t

ws,t


−

∑

a

λs,a,t +
∑

s,a
a(s)=s

λs,a,t−1




s.t. λs,a,t ∈ P

(8)

is δ-approximately positive. By the fundamental theorem of linear programming, we need to check
only the extreme points of the simplex

∑
s,a,t rs,a,tλs,a,t = σ to find a maximizer. These points are

of the form (0, . . . , σ/rs,a,t, . . . , 0) for a choice of tuple (s, a, t). So, consider the function

fσ,w : (s̄, ā, t̄) 7→ ws0,0

(
1−

∑

a

σδ̄s0,a,0
rs0,a,0

)
+
∑

s,t

ws,t


−

∑

a

σδ̄s,a,t
rs,a,t

+
∑

s,a
a(s)=s

σδ̄s,a,t−1

rs,a,t−1




= ws0,0 − σws0,0
δs̄,s0δt̄,0
rs0,ā,0

− σws̄,t̄

1

rs̄,ā,t̄
+ σwā(s̄),t̄+1

1

rs̄,ā,t̄

= ws0,0

(
1− σ

δs̄,s0δt̄,0
rs0,ā,0

)
+

σ

rs̄,ā,t̄

(
−ws̄,t̄ + wā(s̄),t̄+1

)
,

where the term wā(s̄),t̄+1 contributes only when t̄ < T − 1 and we have introduced δ̄x,y,z :=
δx̄,xδȳ,yδz̄,z.

With access to a quantum oracle for the above function, we can solve (8) using the quantum mini-
mum finding algorithm (QMF). If the maximum we find is negative (with more than a determined
additive error of δ), we halt. Otherwise, we continue with the update rule (1) of MWUM.

Proposition III.4 (QMF). Let U δ
σ,w be a quantum circuit that acts on q qubits and computes fσ,w

up to an additive error of δ
2 > 0 in its binary representation,

U δ
σ,w : |s〉 |a〉 |t〉 |x〉 7→ |s〉 |a〉 |t〉 |x⊕ fσ,w(s, a, t)〉 .

There exists a quantum algorithm that, with O(log(1/p)
√

|S||A|T) applications of U δ
σ,w and U δ

σ,w
†

and a q-multiple order of other gates, either obtains a feasible solution to (Lδ
σ,w) up to an additive

error of δ with a success probability of at least 1− p or correctly declares it infeasible.

14

Proof. We use the generalized minimum finding algorithm [AGGW17, Appendix C, Theorem 49].
If the solution returned by the quantum algorithm evaluates fσ,w to at least − δ

2 , we accept the

solution as δ-approximately feasible, and declare (Lδ
σ,w) infeasible otherwise.

Remark 3. The oracle U δ
σ,w uses a register of size O(log(⌈fσ,w⌉/δ)) to represent fσ,w with a precision

of δ. So, the quantity q in the statement above is at least in O(log(⌈fσ,w⌉/δ)).

Recall the MWUM of Theorem II.3 for an approximation oracle. The following theorem is the
main technical result of this paper.

Theorem III.5. Suppose that all iterations of QMF (as described in Proposition III.4) succeed.
Then, MWUM successfully solves the DP (5) in O(|A|2ρ2 log(|S||A|T) log(ρ)) iterations of QMF.

Proof. We perform a binary search on σ ∈ [1, ρ] in O(log(ρ)) iterations. For each choice of σ, we
should solve (Lδ

σ,w) with a precision of δ to be determined. Let σ∗ denote the optimal value of (DP)
obtained at the optimal solution λ∗ = (λ∗

s,a,t). Let σ̄ be the largest value found through the binary

search for which (DPδ
σ̄) is feasible with a feasible solution λ̄ = (λ̄s,a,t). For the same approximation

parameter δ > 0, let σ̃ be the optimal value of (DPδ). By strong duality, σ∗ in an integer. So, a
binary search of O(log(ρ)) steps guarantees that σ∗ ≤ σ̄. It is also obvious that σ̄ ≤ σ̃. It is easy
to verify that, for any λ̄ as above, either λ̄s0,a,0 = O(1 + δ) or there exists a direction along which
the value of λ̄s0,a,0 can be increased in the feasible region. This is sufficient to reduce the problem
to showing that

min
λ∗

max
a

‖λ̃s0,a,0 − λ∗
s0,a,0‖ ,

where λ∗ ranges over the optimizers of (DP). By the convexity of the optimal facet of the LP, this
value is in turn bounded by the distance of the (s0, a, 0)-th component of basic feasible solutions
that involve the index (s0, a, 0) for (DP) and (DPδ).

We conclude that, for every choice of basis, the change in the (s, a, t)-th component an optimal
value of λ is in O

(
δmaxJ ‖B−1

J ‖∞
)
, where J ⊂ S × A × [T] is a basis and BJ is the associated

matrix of constraints as per the notation of Section IIIA 1. The matrix norm is the operator norm
induced by the infinity norm on euclidean vector spaces and thus coincides with the maximum
absolute row sum of the representative matrix. For every choice of J , the matrix BJ may be
viewed as a linear transformation f : RJ → R

S×[T] defined in terms of elementary column vectors
of real vector spaces by

e(s,a,t) 7→ e(s,t) − e(a(s),t+1) ∀ t ≤ T − 2 and e(s,a,T−1) 7→ e(s,T−1).

Let G be a graph with vertices V (G) = S × [T] and edges between (s, t) and (a(s), t+1) for every
(s, a, t) ∈ J . In order for BJ to form a basis, f has to be full rank. Consequently, this means that
the graph G is a tree. Thus, for every (s, t) in G, there exists a unique path connecting the vertex
(s, t) to a vertex (s′, T − 1):

(s, t)
(s,a1,t)−−−−→ (s1, t+ 1)

(s1,a2,t+1)−−−−−−−→ · · · (sT−2−t,aT−1−t,T−2)−−−−−−−−−−−−−−→ (sT−1−t, T − 1).

It can now easily be verified that

e(s,a1,t) + e(s1,a2,t+1) + · · ·+ e(sT−2−t,aT−1−t,T−2) + f−1(es,T−1)

15

is the preimage of (s, t). Therefore, for any choice of index set J , BJ is invertible only if an index
(s0, a, 0) is contained in J for only a single action a ∈ A, and, for any such choice of J and error
vector δ, the change of the optimal λ(s0,a,0) is in O(δ). This, together with the complementary

slackness argument of Section IIIA 2, implies that it suffices to set δ = 1
2|A| and perform MWUM

to find a δ-approximate solution as described in Theorem II.3 and to use QMF as a δ-approximate
oracle for MWUM. Using the notation of the same theorem, we have to calculate ℓ, the upper
bound on slacks in (DPσ). In the simplex Pσ : (

∑
s,a,t rs,a,tλs,a,t = σ), we have

∑
s,a,t |λs,a,t| ≤ σ.

Therefore, each slack in (DPσ) is bounded by 2σ ≤ 2ρ. The number of variables is |S||A|T . This
all amounts to O(|A|2ρ2 log(|S||A|T) log(ρ)) iterations.

As expected, QMF has a nonzero probability of failure. However, we can now set this success
probability sufficiently high so that with a high probability all QMF runs succeed throughout
MWUM.

Corollary 1. Let U δ
σ,w be a quantum circuit that acts on q qubits and computes fσ,w up to an

additive error of δ > 0 in its binary representation. Then, MWUM successfully solves the DP (5)
with a probability of at least 1

2 in

O
(
|A|2.5ρ2

√
|S|T polylog(ρ, |S||A|T)

)
(9)

calls to oracles of QMF and a q-multiple of it as the order of other gates.

Proof. If the probability of failure of a single iteration of QMF is p, we can perform a sequence of
1
2p QMF rounds with a success probability of at least 1

2 . By Theorem III.5, we have to perform

O(|A|2ρ2 log(|S||A|T) log(ρ)) iterations of QMF. So, if 1/p = O(|A|2ρ2 log(|S||A|T) log(ρ)), the
entire process succeeds with no failures with a probability of at least 1

2 . Each round of QMF

performs O(log(1/p)
√

|S||A|T) calls to its oracles. In total, this amounts to (9) calls to oracles of
different rounds of QMF.

C. Construction of the oracles

For a given choice of σ ∈ [1, ρ] and by Theorem III.5, we have to solve problems of the form (Lδ
σ,w).

We make queries to the following oracle and its conjugate:

U δ
σ,w : |s〉 |a〉 |t〉 |x〉 7→ |s〉 |a〉 |t〉 |x⊕ fσ,w(s, a, t)〉 ,

where

fσ,w(s̄, ā, t̄) = ws0,0

(
1− σ

δs̄,s0δt̄,0
rs0,ā,0

)
+

σ

rs̄,ā,t̄

(
−ws̄,t̄ + wā(s̄),t̄+1

)
.

At the k-th iteration of MWUM, the Lagrange multipliers ωs,t are computed via

w
(k)
s,t = (1− εm

(1)
s,t) · · · (1− εm

(k−1)
s,t),

where, for all choices of s ∈ S, a ∈ A, and k ∈ {1, . . . t},

16

m
(k)
s,t =





1−
∑

a

λ
(k)
s0,a,0

s = s0, t = 0

−
∑

a

λ
(k)
s,a,t +

∑

s,a
a(s)=s

λ
(k)
s,a,t−1 otherwise.

Here, λ
(k)
s,a,t is only nonzero if at the k-th iteration the simplex vertex (s(k), a(k), t(k)) was chosen by

QMF. In the case where they are nonzero, the values are of the form σ(k)/rs(k),a(k),t(k) , where σ(k)

is the k-th chosen σ in the binary search:

m
(k)
s,t =





1− λ
(k)

s0,a(k),0
δs(k),s0δt(k),0 s = s0, t = 0

−λ
(k)

s,a(k),t
+ λ

(k)

s(k),a(k),t−1
δa(k)(s(k)),s otherwise.

This can all be implemented using a bounded-size quantum circuit, with a bounded number of
registers each with a number of qubits bounded by log(⌈fσ,w⌉) = O(polylog(|S||A|T, ρ)).
We are ready to state the total gate complexity of solving the finite-horizon DP problem.

Theorem III.6. Let U be a quantum circuit that acts on q qubits and implements the transition
kernel

|s〉 |a〉 |t〉 |x〉 |y〉 7→ |s〉 |a〉 |t〉 |x⊕ a(s)〉 |y ⊕ rt(s, a)〉

of a dynamic programming problem defined on a state space S, an action space A, and a finite time
horizon T ∈ N. There exists a quantum algorithm that, given any state s0 ∈ S, finds an optimal
action a ∈ A with high probability using

O
(
|A|4.5ρ4

√
|S|T polylog(|S||A|T, ρ)

)

queries to U and a q-multiple of it as the order of other gates.

Proof. By Theorem III.5, we have to solve O(ρ2|A|2 polylog(|S||A|T, ρ)) problems of the form

(Lδ
σ,w). Then, the number of gates needed to construct the oracle of w

(k)
s,t is also in the same order.

This amounts to O(ρ4|A|4 polylog(|S||A|T, ρ)) iterations of QMF, thus completing the proof.

Remark 4. The above-mentioned complexity is bounded in terms of T and the maximum instan-
taneous reward of the DP by

O
(
|A|4.5T 4.5⌈r⌉4

√
|S| polylog(|S|, |A|, T, ⌈r⌉)

)
.

Corollary 2. Iterative application of the algorithm of Theorem III.5 finds an optimal policy for

the DP with high probability in O
(
|A|4.5T 1.5ρ4

√
|S|polylog(|S||A|T, ρ)

)
.

17

D. Example: Travelling salesperson problem

In certain combinatorial optimization problems, every state s ∈ S is reachable only at a unique
time t ∈ [T]. In these scenarios, it is useful to instead consider the pair (s, t) as the new definition
of a state.

Remark 5. Consider a DP in which the state space is partitioned as S =
⊔T

t=0 St such that the
states in St are accessible only at time t. This simplifies our linear programming formulation (5)
to

min vs0

s.t. vs ≥ rs,a + va(s) ∀ a ∈ A, s ∈ S \ ST

vs ≥ 0 ∀ s ∈ S .

(10)

Similarly, (DP) simplifies to

max
∑

s∈S\Sf ,a∈A

rs,aλs,a

s.t. 1−
∑

a

λs0,a ≥ 0

−
∑

a

λs,a +
∑

s,a
a(s)=s

λs,a ≥ 0 ∀ s ∈ S \ ST

λs,a ≥ 0 ∀ a ∈ A, s ∈ S \ ST .

(11)

It is straightforward now to check that the result of Theorem III.6 implies the existence of a
quantum algorithm that with high probability finds an optimal action at any input state s0 using

O
(
|A|4.5ρ4

√
|S| polylog(|S||A|, ρ)

)

queries to a quantum circuit consisting of q qubits and a q-multiple of it as the order of other gates.
The queried quantum circuit implements

|s〉 |a〉 |x〉 |y〉 7→ |s〉 |a〉 |x⊕ a(s)〉 |y ⊕ r(s, a)〉 .

An iterative application of this quantum algorithm finds an optimal policy for the dynamic pro-
gramming problem with initial state s0 in

O
(
T |A|4.5ρ4

√
|S| polylog(|S||A|, ρ)

)

queries to the same oracle. �

We now consider the concrete example of the travelling salesperson problem (TSP). Let G be a
fully connected graph with n = |V | vertices. We use the integer indices V = {1, . . . , n} to represent
these vertices. We let 1 be a fixed starting vertex and cij be the cost of travelling from vertex i
to vertex j. The goal is to find a Hamiltonian cycle (a cycle that visits each vertex of the graph

18

exactly once) starting and ending at 1, incurring the lowest total cost. The best known classical
algorithms for the TSP have a runtime of O(n22n) for a graph of size n [Bel61, HK62].

We define a state to be a pair (H, i), where i ∈ H and H ⊆ V . An action at a state (H, i)
corresponds to the choosing of a vertex j ∈ H \ {i}. The instantaneous cost of going from state
(H, i) to (H\{i}, j) is the cost of travelling from vertex j to i, that is, cji. The cost function C(H, i)
represents the minimum total cost of a Hamiltonian path starting at 1, entering H immediately,
traversing H, and ending in i. Bellman’s optimality criterion may now be written as

C(H, i) = min
j∈H\{i}

[
C(H \ {i}, j) + cji

]
.

We begin by assuming an oracle UG for the adjacency of the weighted graph G:

|i〉 |j〉 |x〉 7→ |i〉 |j〉 |x⊕ cji〉 .

We assume that the cost function c is integer-valued and bounded between 0 and an integer ⌈c⌉ > 0.
The registers in UG are of size 2 log(n) + log(⌈c⌉). By preparing O(n2) registers in the values cij ,
we obtain an implementation of the oracle UG using O(n2 polylog(n, ⌈c⌉)) qubits.
It is trivial to move from a cost-minimizing statement to a reward-maximizing one by assigning
rij = ⌈c⌉ + 1 − cij. The definition of states (H, i) can be extended to allow cases in which i 6∈ H
and the definition of an action j on a state (H, i) can be extended to allow j 6∈ H by defining an
instantaneous reward of 0 in both cases. We may now rewrite the dynamic programming problem
as

V ∗(H, i) = max
j∈H\{i}

[
V ∗(H \ {i}, j) + rji

]
.

From UG we can construct an oracle U similar to that of Theorem III.6.

|H, i〉 |j〉 |x〉 |y〉 7→ |H, i〉 |j〉 |x⊕ [H \ {i}, j]〉 |y ⊕ rij〉

Every state |H, i〉 = |H〉 |i〉 is encoded using a binary string of size n that represents the subset
H ⊆ V and an index i encoded with log(n) qubits and stored as |i〉. Therefore, the registers in
U are made from O(n polylog(n, ⌈c⌉)) qubits. The circuit U queries UG and thus uses a total of
O(n2 polylog(n, ⌈c⌉)) qubits.

Corollary 3. Let G be a weighted directed graph of size n with edge weights in the range
{0, . . . , ⌈c⌉}. There exists a quantum algorithm that solves the travelling salesperson problem on G
starting and ending at a marked vertex v0 in O∗(

√
2n⌈c⌉4) gates and using O(n2 polylog(n, ⌈c⌉))

qubits.

Proof. We are interested in the optimal value function at an initial state (V, 1). The time horizon
needed for finding a Hamiltonian cycle is T = n. The optimal value V ∗(V, 1) is therefore in
O(n⌈c⌉). We also note that a state (H, i) is accessible only at time n − |H|. Finally, the actions
for this dynamic programming formulation of the TSP correspond to the choice of vertices and
therefore |A| = O(n). We conclude, using Theorem III.6 and Remark 5, that our algorithm requires
O
(√

2nn10⌈c⌉4 polylog(n22n, n⌈c⌉)
)
queries to U . The number of queries to UG is also in the same

order. This completes the proof.

19

E. Example: Minimum cover-set problem

Consider set U , called the universe, with n elements. We denote by a family F of m subsets V ⊆ U .
The minimum cover-set problem (MCS) is the problem of finding the minimum cardinality of a
subset F ′ ⊆ F such that

⋃

x∈F ′

x = U .

We define a DP as follows. Let the elements of F be denoted by x1, . . . , xm. A state st at a time
t corresponds to the choice of a minimum cover binary choice of either the inclusion or exclusion
of the first t elements x1, . . . , xt. Therefore, st is the tuple (t, St, Ut), where

St ⊆ {x0, . . . , xt}

and

Ut = U \
(
⋃

x∈St

x

)
.

The set of actions consists of only two elements A = {a0, a1}, where the transition from st via a0
is to a state at time t+ 1 that excludes xt; hence,

a0(st) = (t+ 1, St, Ut) ,

and the transition via a1 is to a state at time t+ 1 that includes xt. Hence,

a1(st) = (t+ 1, St ⊔ {xt}, Ut \ xt) .

The transition via a0 occurs at no additional cost, whereas transition via a1 adds a new set to the
candidate cover set. To remain in a reward-maximizing framework, we therefore define the reward
for transition with a0 as +1 and the reward for transition with a1 as 0. Every state at time t = m
is of the form (m,Sm), where Sm ⊆ F , and Sm is a set cover whenever U \ ∪x∈Smx is empty. We
now consider a final action from any state (m,Sm) to a terminus state sm+1 with a reward of m+1
if and only if Sm is a set cover, and a reward of 0 otherwise.

We define a single state s0 = (0, ∅, U) at time t = 0. It is obvious that the value function at s0 is
maximized by a policy that excludes the greater sets in F and the included sets form a set cover.

Corollary 4. There exists a quantum algorithm that solves the minimum set-cover problem in
O(

√
2n poly(m,n)) gates acting on a circuit consisting of O(mn) qubits.

Proof. Our quantum algorithm takes advantage from queries to an oracle of the form in Theo-
rem III.6. Storing every state |st〉 requires O(m) qubits. Storing F requires m registers, each of
size O(n). These registers can be used to evaluate the immediate rewards via O(mn) gates. We
conclude that the oracle of Theorem III.6 can be constructed with O(mn) qubits and O(mn) gates.

20

In the above dynamic programming formulation of the MSC, the number of actions is O(1). The
time horizon of the DP is O(m). The number of states is O(m2n) and the value function is bounded
by O(m). By Remark 5, the algorithm makes

O
(
m5.5

√
2n poly(n) polylog(m)

)

queries to the oracle of the MSC and uses an O(mn) multiple of the number of queries as the order
of other gates. The number of gates used in the construction of the oracle itself is O(mn). This
amounts to a total of

O
(
m7.5

√
2n poly(n) polylog(m)

)

quantum gates for the entire algorithm.

IV. Quantum complexity lower bound

We now investigate the quantum query complexity of solving DPs using the adversary method of
[Amb02]. Consider two families of DP problem instances M1 and M2 sharing the same state space
S = S0 ⊔ S1 ⊔ SB ⊔ SG, the same action space A, and the same time horizon T ∈ N. We assume
there exist positive integers m and n such that |S1| = |SB | = n and |A| = m

n
> 2. The set SG is a

singleton |SG| = 1. We will assume that the elements in S1 are ordered according to an indexing
{1, 2, . . . , n}. For all instances in M1 and M2, every action maps s ∈ SG to itself with a reward
of 1 and every s ∈ SB to itself with a reward of 0.

The structure of S0 is also common between DP problem instances in M1 and M2. The initial
starting point for all instances is a marked state s0 ∈ S0. The role of S0 is to make every state in
S1 accessible from s0 in ⌈log n⌉ steps. Let aL, aR ∈ A be two fixed actions. The states in S0 form
a binary tree with s0 as the root. Actions aL and aR map every parent state to its left and right
children (which might coincide) with a reward of 0, and every action a ∈ A \ {aL, aR} maps every
state in S0 to itself with a reward of 1. The leaves of the tree consist of b1 = ⌈|S1|/2⌉ states. The
leaves have b2 = ⌈b1/2⌉ parents, and so on. Since there exists a power of two between n and 2n,
for all i we have bi ≤ n/2i−1. Therefore, |S0| ≤ 2n and, consequently, |S| = O(n).

For any M1 ∈ M1, every a ∈ A maps every s ∈ S1 to some a(s) ∈ SB with a reward of 0. Therefore,
the optimal value function for M1 at s0 is v∗M1

(s0) = T and any action a 6= aL, aR is optimal. The
instances M2 ∈ M2 differ from those in M1 only in a special state–action pair (s̄, ā) ∈ S1 ×A for
which ā(s̄) is the single element of SG with a reward of r1 = T . So long as T ≥ ⌈log(n)⌉, we have
v∗M2

(s0) > T and the optimal action at s0 is one of aL or aR, depending on the choice of s̄.

Now, consider a function f : {0, 1}∗ → {0, 1} that receives a binary string describing the transition
kernel of a problem instance in M1 ⊔M2 and returns 0 if and only if the optimal action at s0 is
in {aL, aR}.

Theorem IV.1. Any quantum algorithm that computes the function f above uses Ω(
√

|S||A|)
queries.

Proof. We consider the relation R between instances M1 ∈ M1 and M2 ∈ M2 to be defined as
(M1,M2) ∈ R if and only if their transition kernel differs in exactly a single pair (s̄, ā). We now

21

s0

s̄

0

0

0

0

0

0

0

1

0ar

0aℓ

0ar

0
aℓ

0ar

0aℓ

0aℓ

0ar

0ar

0aℓ

0ar

0aℓ

0ar

0aℓ

S0

S1 SB

SG0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

r0 ā

r1 ā

FIG. 1. Schematics of instances in M1 and M2. A pair M1 ∈ M1 and M2 ∈ M2 is depicted that is in
relation R, as their transition kernels differ in a single state–action pair (s̄, ā) ∈ S1 ×A.

use [Amb02, Theorem 2]. We note that

• Each instance in M1 is in relation R with |S1||A| instances in M2.

• Each instance in M2 is in relation R with |SB | instances in M1.

• For every instance in M1 and every pair (s, a) ∈ S × A there is at most 1 instance in M2

with a different transition kernel (s, a) 7→ (a(s), r(s, a)).

• For every instance in M2 and every pair (s, a) ∈ S × A there are at most |SB | instances in
M1 with a different transition kernel (s, a) 7→ (a(s), r(s, a)).

Then, [Amb02, Theorem 2] implies that the number of queries made by the quantum algorithm is
lower bounded by

Ω

(√
|S1||A||SB |

|SB|

)
= Ω

(√
|S1||A|

)
= Ω(

√
|S||A|) ,

proving the theorem.

V. Classical complexity lower bound

We now investigate the computational complexity of solving DPs classically and prove a query
complexity separation between the lower bound on the classical query complexity of bounded-
error randomized algorithms and the upper bounds on the quantum query complexity proven in
Section IV.

Once again, we borrow techniques from adversarial methods [Aar06, Amb02, CW17], but this
time apply them to classical randomized algorithms. As in Section IV, we define families of DP
instancesM1 andM2 sharing the same state and action spaces. We then show that, if a randomized

22

algorithm solves DPs with high probability, there should be a deterministic algorithm µ that also
succeeds in distinguishing a large fraction of the instances in the two families.

The family M = M1 ⊔M2 of DP instances is defined as in Section IV and Fig. 1. For an instance
M1 ∈ M1, every a ∈ A maps every s ∈ S1 to some a(s) ∈ SB with a reward of 0, except at a
special state–action pair (s̄, ā) ∈ S1 × A at which the reward is r0 = 1. The instances M2 ∈ M2

differ from those in M1 only in this special state–action pair (s̄, ā) for which ā(s̄) ∈ SG with a
reward of r2 = T . By a similar argument to that in the previous section, it is obvious that an
algorithm that finds an optimal action at s0 is able to distinguish instances between M1 and M2.
It is straightforward to see that

|M1| = |M2| = mnm.

Let ΠQ be the set of all the deterministic algorithms which, for an instance M ∈ M, make at most
Q queries to the oracle

(s, a) 7→
(
a(s), r(s, a)

)

before returning an optimal action at s0. A randomized algorithm running at most Q steps is a
distribution µ on ΠQ. Let P(ΠQ) be the set of all probability measures on ΠQ and aµM be the action
returned by µ on input M . Suppose there exists a randomized algorithm µ ∈ P(ΠQ) that, when
run on every M ∈ M, correctly returns an optimal action aµM ∈ π∗

M (s0) with high probability.
That is to say,

max
µ∈P(ΠQ)

min
M∈M

Pa∼µ(M)

(
aµM ∈ π∗

M (s0)
)
≥ 1− ξ . (12)

By Yao’s minimax principle,

min
D∈P(M)

max
µ∈ΠQ

PM∼D

(
aµM ∈ π∗

M (s0)
)
≥ 1− ξ , (13)

where D is a distribution on M.

Let D1 and D2 be uniform distributions on M1 and M2, respectively, and let D be their uniform
mixture. Now let µ ∈ ΠQ be a deterministic algorithm which fails to return an optimal aµM ∈ π∗

M (s0)
with a probability of at most ξ on inputs from D. This implies that µ fails with a probability of
at most 2ξ if the instance is drawn from either of D1 or D2 considered individually. We define
Ci ⊂ Mi as the sets of instances on which µ succeeds. It is obvious that

|Ci| ≥ (1− 2ξ)|Mi| = (1− 2ξ)mnm .

We call M1 ∈ M1 and M2 ∈ M2 a twin if their transition kernels are identical except that the
reward for taking action ā at state s̄ is ri for i = 1, 2. We let E(A1,A2) denote the number of
twins where the i-th component of the triplet is in Ai for i = 1, 2. The number of twins on which
µ succeeds is lower bounded by

23

E(C1, C2) ≥ E(C1,M2)− E(M1,M2 \ C2)
≥ (1− 2ξ) ·mnm − 2ξ ·mnm = (1− 4ξ)mnm.

Setting ξ = 1
8 guarantees that µ distinguishes at least 1

2mnm twins of DP instances. The key
observation now is that for any twin, µ has to query (s̄, ā), that is, the special state–action pair
associated to the twin; otherwise, µ cannot distinguish them. We now define a new problem.

Definition V.1 (Vector differentiation). Let A and B be two arrays of integers of size m. We say
that a deterministic algorithm is able to distinguish A from B if it queries an entry i for which
Ai 6= Bi. We say (A,B) is a twin of arrays of size m if A takes values in {1, 2, . . . , n} and B differs
from A in only one entry. At this entry, B takes a value 0.

Now, we use µ to construct an algorithm which applies to the vector differentiation problem. We
first construct an auxiliary algorithm µ̃ that mimics the flow of µ, but with a slight difference.
Suppose that µ examines an entry (s, a). If a(s) ∈ SG, then µ̃ will branch similarly to µ as
though the query to a(s) has returned 0. As a result, µ̃ branches exactly like µ on inputs from C1.
This, consequently, means that on any component of any triplet that µ can distinguish, µ̃ queries
(s̄, ā) but collects ā(s̄) from an instance in C1 and 0 from an instance in C2. Therefore, vector
differentiation can be reduced to µ̃. The following observation now remains to be made:

Proposition V.1. Any deterministic algorithm µ̃ that performs vector differentiation needs Ω(m)
queries to distinguish 1

2mnm twins of vectors.

Proof. We view the queries of µ̃ as a decision tree. At every node of the tree, µ̃ queries a certain
element of the vector of integers. The root of the tree is the beginning of the algorithm at which
no queries have yet been made. We say this node is at depth 0. A node at which a k-th query
to the vector is made is called a depth-k node. It is obvious that a depth-k node can distinguish
at most nm−k pairs of vectors. Let (A,B) be a twin, with A and B distinguishable at a depth-k
node. This means that all previous k − 1 queries to A and B have returned in the same integers.
The k-th query has resulted in a nonzero integer on one of the vectors and 0 on the other. There
are m− k remaining entries and A and B have to coincide for all of them. This means that there
are nm−k ways to form A and B into twins.

On the other hand, there are at most nk nodes at a depth of k. Therefore, the depth-k nodes can
in total distinguish at most nm twins of vectors. In order for µ̃ to distinguish 1

2mnm twin vectors,
the total depth of the decision tree of µ̃ has to be at least 1

2m. This proves the claim.

Corollary 5. Any classical randomized algorithm that solves a dynamic programming problem at
a marked initial state and a time horizon T > log(⌈|S|⌉) via queries to an oracle

(s, a) 7→
(
a(s), r(s, a)

)

has to make at least Ω(|S||A|) queries to that oracle.

VI. Conclusion

In this paper, we have introduced and analyzed quantum algorithms for solving finite-horizon
dynamic programming problems. Several complexity-theoretic arguments were used to demonstrate

24

a quantum advantage in terms of the size of the dynamic programming problem solved at the
expense of the appearance of polynomial factors of parameters that represent the precision of the
solution and the number of actions.

The precision factor for finite-horizon dynamic programming problems appeared as an upper bound
on the instantaneous reward (or cost) of each action in the formulation of the problem. In contrast,
the polynomial scaling with respect to the number of actions is required in order to guarantee that
an optimal action can be read out from the approximate solution generated by the multiplicative
weight update method.

As a first application, we used our algorithm to solve the travelling salesperson problem (TSP).
Given a maximum edge-weight ⌈c⌉, we showed that our algorithm can solve the TSP using
O∗(⌈c⌉4

√
2n) quantum gates, providing a quadratic speedup in solving the TSP at the expense

of a polynomial (quartic) scaling with respect to the maximum edge-weight ⌈c⌉. It is important
to note that both the classical solution of Bellman–Held–Karp [Bel61, HK62] with a runtime of
O(n22n) and the quantum algorithm of [ABI+19] with a runtime of O∗(1.728n) have only polylog-
arithmic dependence on the maximum edge-weight. Our result is perhaps better comparable to
classical algorithms that take advantage of small edge-weights. For example, [Bjo14] presents an
algorithm that has a runtime of O∗(w1.657n), in which a linear dependence on the sum w of all
weights in the graph appears.

As a second application, we used our algorithm to solve the minimum set-cover problem (MSC).
Given a universe with n elements, and m of its subsets, our quantum algorithm solves the prob-
lem of finding a minimal cover for the universe using O(

√
2n poly(m,n)) gates. We note that

various classical algorithms for the MSC exist with running times O(n2m), O(mn2n) [FK10], and
O(1.227m+n) [VRB08]. The dynamic programming approach results in a run-time of O(mn2n).

One important direction for future research would be to improve the dependence of the approach
presented herein on the number of actions and the precision parameters. It would be interesting
to investigate whether polynomial dependence on these parameters is necessary. In particular, we
raise the question of whether a quantum algorithm for solving the TSP that achieves O∗(

√
2n)

scaling in n would necessarily require a polynomial dependence on the maximum edge-weight of
the graph.

VII. Acknowledgement

The author thanks Ronald de Wolf for providing invaluable technical comments. The author
is indebted to Seyed Saeed Changiz Rezaei, Yichen Chen, Ryuhei Mori, Yoichi Iwata, and
Jevgēnijs Vihrov for useful technical discussions, and to Marko Bucyk for his careful review and
editing of the manuscript. The author further acknowledges the support of 1QBit, the Government
of Ontario, and Innovation, Science and Economic Development Canada.

[Aar06] Scott Aaronson. Lower bounds for local search by quantum arguments. SIAM Journal on Com-
puting, 35(4):804–824, 2006.

[ABI+19] Andris Ambainis, Kaspars Balodis, Jānis Iraids, Martins Kokainis, Krǐsjānis Prūsis, and Jevgēnijs
Vihrovs. Quantum speedups for exponential-time dynamic programming algorithms. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1783–1793. SIAM, 2019.

25

[AG18] Joran van Apeldoorn and András Gilyén. Improvements in quantum sdp-solving with applications.
arXiv preprint arXiv:1804.05058, 2018.

[AG19] Joran van Apeldoorn and András Gilyén. Quantum algorithms for zero-sum games. arXiv preprint
arXiv:1904.03180, 2019.

[AGGW17] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Quantum sdp-
solvers: Better upper and lower bounds. In Foundations of Computer Science (FOCS), 2017 IEEE
58th Annual Symposium on, pages 403–414. IEEE, 2017.

[AK07] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite programs.
In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 227–236.
ACM, 2007.

[Amb02] Andris Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer and
System Sciences, 64(4):750–767, 2002.

[BC12] Hans J Briegel and Gemma De las Cuevas. Projective simulation for artificial intelligence. Scientific
reports, 2:400, 2012.

[Bel61] Richard Ernest Bellman. Dynamic programming treatment of the traveling salesman problem. 1961.
[Bel13] Richard Bellman. Dynamic programming. Courier Corporation, 2013.
[Bjo14] Andreas Bjorklund. Determinant sums for undirected hamiltonicity. SIAM Journal on Computing,

43(1):280–299, 2014.
[BS17] Fernando GSL Brandão and Krysta M Svore. Quantum speed-ups for solving semidefinite programs.

In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual Symposium on, pages 415–426.
IEEE, 2017.

[CLG+18] Daniel Crawford, Anna Levit, Navid Ghadermarzy, Jaspreet S Oberoi, and Pooya Ronagh. Rein-
forcement learning using quantum boltzmann machines. Quantum Information and Computation, 18,
January 2018.

[CW17] Yichen Chen and Mengdi Wang. Lower bound on the computational complexity of discounted
markov decision problems. arXiv preprint arXiv:1705.07312, 2017.

[DCT+08] Daoyi Dong, Chunlin Chen, Tzyh-Jong Tarn, Alexander Pechen, and Herschel Rabitz. Incoher-
ent control of quantum systems with wavefunction-controllable subspaces via quantum reinforcement
learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(4):957–962,
2008.

[DH96] Christoph Durr and Peter Hoyer. A quantum algorithm for finding the minimum. arXiv preprint
quant-ph/9607014, 1996.

[FK10] Fedor V Fomin and Dieter Kratsch. Exact exponential algorithms. Springer Science & Business
Media, 2010.

[HK62] Michael Held and Richard M Karp. A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial and Applied Mathematics, 10(1):196–210, 1962.

[Kal07] Satyen Kale. Efficient algorithms using the multiplicative weights update method. Princeton Uni-
versity, 2007.

[KLL+19] Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M Svore, Xiaodi Wu, et al. Quantum
sdp solvers: Large speed-ups, optimality, and applications to quantum learning. Leibniz international
proceedings in informatics, 2019.

[MGAG16] Salvatore Mandra, Gian Giacomo Guerreschi, and Alán Aspuru-Guzik. Faster than classical
quantum algorithm for dense formulas of exact satisfiability and occupation problems. New Journal of
Physics, 18(7):073003, 2016.

[MLM17] Dominic J Moylett, Noah Linden, and Ashley Montanaro. Quantum speedup of the traveling-
salesman problem for bounded-degree graphs. Physical Review A, 95(3):032323, 2017.

[VRB08] Johan MM Van Rooij and Hans L Bodlaender. Design by measure and conquer, a faster exact
algorithm for dominating set. arXiv preprint arXiv:0802.2827, 2008.

	Quantum Algorithms for Solving Dynamic Programming Problems
	Abstract
	I Introduction
	II The multiplicative weights update method
	III Solving dynamic programming problems
	IV Quantum complexity lower bound
	V Classical complexity lower bound
	VI Conclusion
	VII Acknowledgement
	 References

