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Abstract—The focus of this work is to explore the use of
quantum annealing solvers for the problem of phase unwrapping
of synthetic aperture radar (SAR) images. Although solutions
to this problem exist based on network programming, these
techniques do not scale well to larger-sized images. Our approach
involves formulating the problem as a quadratic unconstrained
binary optimization (QUBO) problem, which can be solved using
a quantum annealer. Given that present embodiments of quantum
annealers remain limited in the number of qubits they possess,
we decompose the problem into a set of subproblems that can be
solved individually. These individual solutions are close to optimal
up to an integer constant, with one constant per sub-image. In a
second phase, these integer constants are determined as a solution
to yet another QUBO problem. We test our approach with a
variety of software-based QUBO solvers and on a variety of im-
ages, both synthetic and real. Additionally, we experiment using
D-Wave Systemss quantum annealer, the D-Wave 2000Q. The
software-based solvers obtain high-quality solutions comparable
to state-of-the-art phase-unwrapping solvers. We are currently
working on optimally mapping the problem onto the restricted
topology of the quantum annealer to improve the quality of the
solution.

Index Terms—Quantum Annealing, Phase Unwrapping,
QUBO.

I. INTRODUCTION

Two-dimensional phase unwrapping is the process of re-
covering unambiguous phase values from a two-dimensional
array of phase values known only modulo 2π rad. The mea-
sured phase is also affected by random noise and systematic
distortions. This problem arises when the phase is used as a
proxy indicator of a physical quantity, which is the time delay
between two signals in the case of interferometric synthetic
aperture radar (InSAR) [4]. This time delay is significant,
as it is affected by the height differences of the illuminated
target. It can thus be used to extract accurate three-dimensional
topography and reveal topographical changes that occur over
time. As the phase is observable only on a circular space
where all measured values are mapped to the range (−π, π],
the observed data must be mapped back to the full range of
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real phase values in order to be meaningful. For unwrapping
purposes, the sampling rate is typically assumed to be suitable
for most datasets to prevent aliasing. That is, the absolute
difference in phase between two adjacent data points is as-
sumed to be smaller than π. This phase-unwrapping problem
represents a class of imaging techniques that include InSAR,
magnetic resonance imaging, and optical interferometry.

The development of InSAR and many other applications
has stimulated interest in building accurate two-dimensional
phase-unwrapping algorithms. The most commonly used un-
wrapping technique is based on network programming strate-
gies that formulate the problem as a minimum cost flow
(MCF) [3] problem. One of these solvers is the sequential tree-
reweighted message passing (TRWS) algorithm [11]. However,
since the InSAR images can be quite large—normally larger
than 60 M pixels—the process of phase unwrapping via TRWS
can take a prohibitively long time on a classical computer.
Thus, we explore whether a quantum computing system could
be a potential candidate for solving the phase-unwrapping
problem.

Quantum computing exploits the laws of quantum me-
chanics to process information [12]. In contrast to classical
computers, which use bits to process information, quantum
computers use quantum bits, or qubits, as the basic units of
quantum information. Analogously to bits, qubits encode state
information. Qubits may be in either of the two distinct states
of |0〉 or |1〉, but they may also encode a superposition of these
states, (i.e., α |0〉+ β |1〉, with complex-valued coefficients α
and β).

Quantum annealing is a quantum computing method used to
find the optimal solution to certain combinatorial optimization
problems [5]. This is achieved by using properties of quantum
mechanics such as quantum tunnelling, entanglement, and
superposition.

Quantum annealing systems are able to solve problems in
quadratic unconstrained binary optimization (QUBO) form.
Any unconstrained quadratic integer problem with bounded
integer variables can be transformed by a binary expansion into
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QUBO form [7]. The phase-unwrapping problem is a quadratic
unconstrained problem by default, and it can be mapped to a
QUBO problem by simply encoding each variable (e.g., kt
in (6)) into a vector of binary variables.

Due to the limitations in accessing actual quantum annealing
infrastructure, we have tested our methodology using a variety
of QUBO solvers. As we will show, the results we obtain
match the results obtained using the classical network opti-
mization method (i.e., the TRWS method), which is considered
the benchmark in addressing the unwrapping problem.

InSAR images tend to be quite large, often exceeding
20 k × 30 k, or 600 M, pixels. In the simplest problem where
each pixel label would require one qubit, a 600-M-qubit
quantum annealer would be required; such a machine is not
currently available. To overcome the limitations of present-day
technology, we have developed a method where we partition
an image and then use quantum annealing on the individual
partitions to obtain suboptimal labelling, after which we use
quantum annealing in a second phase to obtain labels that
approach the ones obtained through classical methods. We
have named our method super-pixel decomposition”.

The rest of the paper is organized as follows. In Section II
we provide background information, in Section III we explain
our methodology, and in Section IV we present our experi-
mental results. We give our conclusion in Section V.

II. BACKGROUND

A. Phase-unwrapping formulation
Strictly speaking, phase unwrapping is an ill-posed problem,

as the unwrapped phase array contains information that is not
available in the wrapped array. Therefore, to perform correctly,
all phase-unwrapping methods rely on regularizing assump-
tions. The most common of these assumptions is that the
Nyquist criterion is met throughout most (but not necessarily
all) of the scene. That is, the spatial sampling rate is assumed
to be high enough that aliasing is avoided [2].

The Nyquist criterion implies that the difference between the
phases of two neighbouring pixels is less than 2π. The key to
phase unwrapping, therefore, lies not on directly calculating
the unwrapped phase values themselves, but in estimating
these values given that the differences of the wrapped phases
is the same as those of the unwrapped phases dictated by the
Nyquist assumption.

Let φ, ϕ, and k denote the unwrapped phase, the wrapped
phase, and an integer label to be estimated, respectively. For
the phase of a pixel i, we have

φi = ϕi + 2πki . (1)

The unwrapping problem can then be expressed as an
optimization problem of the cost function

E =
∑

(s,t)∈A

Wst|kt − ks − ast| , (2)

that is,

argmink =
∑

(s,t)∈A

Wst|kt − ks − ast| , (3)

where ki are the labels that will determine the original phase
as per (1), A is the set of pixels in the SAR image, Wst

are weights defining the neighbourhood structure, and aij are
constants obtained from the image as per the equation

aij
def
=

wrap (φi − φj)− (φi − φj)
2π

, (4)

where
wrap (θ) = arg

(
eiθ
)

= θ − b θ
2π
c . (5)

The Appendix details the derivation of the cost function shown
in (2).

The optimization problem as defined in (4) above admits
several solutions, as only the difference of the labels is used
in the cost function. Labels can be increased or decreased by
the same amount and still result in the same minimal cost.
A way to further regularize the solution is to insist that the
desirable solution involve labels that are the smallest ones
possible. Therefore, the cost function is augmented with an
extra term that depends on the labels themselves as follows:

E =
∑

(s,t)∈A

Wst|kt − ks − ast|+
∑
s∈A

ωs|ks − as| (6)

The weights Wst, ωs, and the bias as, are chosen heuristi-
cally and represent ad hoc information one may have on the
scene represented in the image, most often as = 0.

Without loss of generality, one can also consider cost
functions involving quadratic expressions of the labels instead
of the more challenging absolute value ones,

E =
∑

(s,t)∈A

Wst (kt − ks − ast)2 +
∑
s∈A

ωs (ks − as)2 , (7)

and in the case that as = 0, a similar cost function is

E =
∑

(s,t)∈A

Wst (kt − ks − ast)2 +
∑
s∈A

ωsk
2
s . (8)

Although the L1-norm is preferred over the L2-norm in the
continuous case—as the L2-norm tends to spread the error
and does not result in good solutions [3]—this is not a factor
in the integer case. The most commonly used method of
solving the phase-unwrapping problem (TRWS) is attributed
to V. Kolmogorov [11].

B. Quantum Annealing

Quantum annealing employs quantum tunnelling to ensure
that a system is able to escape local minima as it traverses the
state space of an energy function toward its way to ground-
state settlement. Quantum computational systems, such as
the ones manufactured by D-Wave Systems, use quantum
annealing to locate the ground state of an artificial Ising
system [9]. An Ising Hamiltonian describes the behaviour of
such a system as

Hp =

N∑
i=1

hiσ
z
i +

N∑
i,j=1

Jijσ
z
i σ

z
j , (9)



where hi is the energy bias for spin i, Jij is the coupling
energy between spins i and j, σzi is the Pauli spin matrix,
and N is the number of qubits. Quantum annealing on this
system is achieved by the gradual evolution of the Hamiltonian
system [9]

H (t) = Γ (t)

N∑
i=1

∆iσ
x
i + Λ (t)Hp . (10)

As time passes, Γ decreases from 1 to 0 while Λ increases
from 0 to 1. If the annealing process is performed sufficiently
slowly, the system remains in the ground state of H(t) for
all times, t, settling at the end of the annealing process at the
ground state of Hp. The Hamiltonian in (9) can be rewritten in
vector form as H (s) = sTJs + sTh, in the form of a QUBO
problem [14].

As used in the rest of this paper, the objective function is
expressed in QUBO form in scalar notation, and is defined as

C (x) =
∑
i

aixi +
∑
i<j

bi,jxixj , (11)

where x ∈ {0; 1}n is a vector of binary variables and {ai; bi;j}
are real coefficients.

Before an application problem can be solved on a quantum
annealer, it must first be mapped into QUBO form. As a first
step in transforming the InSAR problem into a QUBO prob-
lem, the ki label that is non-binary valued must be transformed
into one that is binary valued. Let ki ∈ {0, Di − 1}, where
Di is the number of allowed values (labels) for ki. This can
be achieved by writing ki in binary form. The binary trans-
formation restricts the number of new-valued binary variables
required to represent ki. Let di = dlog2Die and ki = 〈2,xi〉,
where the vector xi = [xi,di , · · · , xi,1, xi,0] represents the bits
of ki and 2 = [2di , · · · , 2, 1] is the vector of powers of two.
Equation (7) can be written in QUBO form as

(12)

E =
∑

(s,t)∈A

Wst

(∑
i

bixi,t−
∑
i

bixi,s−ast

)2

+
∑
s∈A

ωs

(∑
i

bixi,s−as

)2

,

where bi is the weighting coefficient for the binary variable
xi (bi = 2i in the case of the binary encoding).

Many problems can be formulated to take advantage of
quantum annealing, which is advantageous because it con-
verges faster than other techniques to an optimum solu-
tion [10].

Quantum annealing can be compared to simulated annealing
by identifying that the temperature parameter in simulated
annealing performs a similar role to quantum tunnelling in
quantum annealing. The temperature in simulated annealing
defines the probability of moving from a single current state
to a higher energy state to escape local minima. The assumed
advantage of quantum annealing over simulated annealing is

that tunnelling allows the system to directly pass through high
energy barriers without having to climb over them.

Analytical and numerical evidence indicates that quantum
annealing can outperform simulated annealing [8]. Therefore,
quantum annealing is a good potential solver for the InSAR
phase-unwrapping problem.

C. Optimizers

As mentioned earlier, the size of the problem prevents
the direct use of currently available annealing infrastructure.
Similarly, the size of the problem results in a prohibitively
expensive QUBO computation if one elects to perform a global
optimization on the full-scale image. Thus, the methodology
involves partitioning an image, and then applying QUBO
solvers first on the partitions and then in a second phase on
an abstraction of the image comprising what we call “super-
pixels”, each one representing a partition of the original image.

In the following sections, (II-C1 and II-C2), we discuss the
QUBO solvers we have employed, after which we discuss
our image partitioning approach and the two-phase super-pixel
methodology.

1) Classical Optimizer:
a) TRWS [11]: The TRWS algorithm is used for discrete

energy minimization, where the energy function can be for-
mulated as

E (x|θ) = θconst +
∑
s∈ν

θs (xs) +
∑

(s,t)∈ε

θst (xs, xt) , (13)

where ν corresponds to the set of pixels, xs indicates the
label of pixel s ∈ ν, ε corresponds to the set of edges (each
edge connects two related pixels), θs(·) is the penalty function
(i.e., a term of an unconstrained objective function added to
add some constraint to it) of unary data, and θst(·, ·) is the
penalty function of the pairwise terms. This energy function
is usually derived in the context of Markov random fields [6].
The algorithm is widely used in phase unwrapping problems,
where the unary penalty functions represent the unary terms
in (7), where the pixels are penalized for having large values,
while the pairwise penalty functions represent the pairwise
terms in (7), where the two pixels kt and ks are penalized for
having a difference not equal to ast.

2) QUBO Optimizer:
a) PTICM: Parallel tempering with isoenergetic cluster

moves (PTICM) is one of the parallel tempering algorithms
introduced in [15], which is a Monte Carlo approach for solv-
ing QUBO problems. The PTICM algorithm simultaneously
simulates multiple replicas of the original system at different
temperatures. Each of the replicas has a different initial
state. The replicas are regularly swapped with neighbouring
temperatures based on a Metropolis criterion. These swaps
enable the different replicas to make a random walk in the
temperature space, allowing the efficient overcoming of energy
barriers.



b) Parallel Tempering: We experimented using an al-
ternative implementation of parallel tempering. This solver
gives accuracy similar to, if not better than, PTICM. This
solver is one of Microsoft’s Quantum Inspired Optimization
(Microsoft QIO) solvers, and is accessible through a cloud–
client interface. However, at present we have limited early
access to this solver. Hence, we made use of it only on small
images.

c) Simulated Annealing: This solver provides an imple-
mentation of the simulated annealing method [13]. The solver
is also one of the Microsoft QIO solvers. Therefore, we used
this solver on small images for the same reason mentioned
above.

d) D-Wave Annealing: D-Wave Systems provides imple-
mentations of different quantum annealing systems, starting
from the D-Wave One announced in 2011 [9]. We used the
D-Wave 2000Q 6 machine to unwrap the InSAR sub-images.
The machine contains 2041 qubits. The qubits are sparsely
connected in an architecture known as a “Chimera” graph. The
Chimera architecture comprises sets of connected unit cells.
Each unit cell has four horizontal qubits that are connected via
couplers to four vertical qubits. Unit cells are tiled horizontally
and vertically with adjacent qubits connected. The qubits
are logically mapped into a matrix of 16 × 16 unit cells,
with eight qubits per cell. In theory, the Chimera architecture
comprises 16 × 16 × 8 = 2048 qubits. In practice, however,
the largest number of embeddable qubits is slightly smaller
(2041 qubits) due to missing, or faulty, qubits, an issue that
arises during manufacturing. This also results in there being
some nonexistent connections.

III. METHODOLOGY

In this section, we describe our methodology in breaking
down the phase-unwrapping problem into smaller problems
that are easier to solve. The smaller problems can be solved
in parallel and approach the global solution.

A. Phase-Unwrapping Decomposition

Equation (7) describes the energy function for phase un-
wrapping. The equation consists of two terms: the pair-
wise term Wst (kt − ks − ast)2 that describes the relationship
between two pixels s and t, and the unary term ωs (ks − as)2
that describes the energy of the pixel s.

Phase-unwrapping decomposition is based on a divide-and-
conquer approach. A given large InSAR image is subdivided
into smaller sub-images that fit onto a quantum annealing ma-
chine. Each of these sub-images are unwrapped independently.
The sub-images are then stitched together to form the final
unwrapped large InSAR image.

This approach introduces a problem at the boundaries of
the sub-images. Since we are unwrapping the sub-images
separately, there is no guarantee that the labelling of two
pixels, each belonging to a boundary of two adjacent sub-
images, will attain optimal labelling consistent with that which
would be obtained if both pixels had been part of the same

optimization problem (i.e., if we had unwrapped the entire
image all at once).

We assume that the pixels in each sub-image are labelled
correctly up to an integer additive factor, where all the pixels
of one sub-image share the same additive factor. Then, our
objective is to find those additive factors such that all the pixels
at the boundaries will be consistent.

We propose a super-pixel heuristic to determine these addi-
tive factors as we now will describe.

The wrapped InSAR image is divided into non-overlapping
sub-images, where each sub-image contains a subset of the
pixels. The energy function determined by (7) can be rewritten
as

E =
∑
g∈G

 ∑
(s,t)∈Ag

Wst (kt−ks−ast)2 +
∑
s∈Ag

ωs (ks−as)2


+
∑

t ∈ Ai,
s ∈ Aj ,
i 6= j ,

Wst (kt − ks − ast)2 ,

(14)

where G is the set of the sub-images, and Ax is the set of
pixels in the sub-image x.

In the above equation, the terms within the square brackets
correspond to an energy function for each sub-image while
the last sum collects all the terms that connect the sub-images.
Our approach is to optimize each of the sub-images, that is,
to determine the labels that optimize the energy functions
corresponding to each sub-image separately. We assume next
that the obtained solutions are correct—that they are identical
plus or minus a sub-image wide integer shift—to the solution
obtained when we optimize the image in its totality. The
next step is to determine these additive factors, which can be
formulated as a QUBO problem. Let Ks denote the additive
factor corresponding to sub-image s, and let k

′

i denote the
label of pixel i as determined by the QUBO formulation of
each sub-image. Then k = k

′

i +Ks for i in As.
Equation (14) can now be rewritten as follows:

(15)

E =
∑
g∈G

 ∑
(s,t)∈Ag

Wst

(
k

′

t +Kg − k
′

s −Kg

)2

+
∑
s∈Ag

ωs

(
k

′

s +Kg − as
)2

+
∑

t ∈ Ai,
s ∈ Aj ,
i 6= j

Wst

(
k

′

t +Ki − k
′

s −Kj − ast
)2
,

The first sum within the bracket is devoid of Kg and it is
constant as the labels k

′

s have been determined by the previous



QUBO operation. Ignoring constant terms, Equation (15) can
be rewritten as

Ẽ =
∑
g∈G

∑
s∈Ag

ωs

(
k

′

s +Kg − as
)2
,


+

∑
t ∈ Ai,
s ∈ Aj ,
i 6= j.

Wst

((
k

′

t − k
′

s

)
+ (Ki −Kj)− ast

)2

(16)

Denoting a
′

s = as − k
′

s and a
′

st = ast −
(
k

′

t − k
′

s

)
, Equa-

tion (16) is written as

(17)

Ẽ =
∑
g∈G

∑
s∈Ag

ωs

(
Kg − a

′

s

)2
+

∑
t ∈ Ai,
s ∈ Aj ,
i 6= j.

Wst

(
Ki −Kj − a

′

st

)2
,

The first term of (17) is a second-order function, while the
second term regularizes the solution by selecting Kg to be
as small as possible. The coefficient ωs and the term as
as per (7) and (8) have been chosen arbitrarily. To ensure
that our energy function conforms to the form of (7) without
affecting the accuracy of the solution, we select ωs = ωg and
a

′

s = Ag ∀s ∈ Ag . This results in the following expression for
the energy function:

Ê =
∑

t ∈ Ai,
s ∈ Aj ,
i 6= j

Wst

(
Ki −Kj − a

′

st

)2
+
∑
g∈G

ωg (Kg −Ag)2 ,

(18)
This is the energy function of the super-pixel level where Kg

represents the sought labels for each sub-image (i.e., super-
pixel). As it is a quadratic unconstrained integer optimization
problem, it is amenable to a QUBO-based solution.

IV. EXPERIMENTS

In this section, we present the experimental results for the
super-pixel decomposition approach using a classical solver
and other QUBO solvers. Our objective is to attempt to support
the assertion that our approach of partitioning the image
and formulating the phase-unwrapping problem as a QUBO
problem results in good-quality solutions. The objectives of
the present work have not been to fully quantify the quality of
the solutions obtained nor the efficacy of the various solvers
involved.

A. Setup

1) Datasets: There are eight sets of data used in the
experiments. They are summarized in Table I. The datasets
include simulated data that have different levels of noise and
also real data.

2) Solvers: The four solvers discussed in the background
section, namely, TRWS, PTICM, parallel tempering, and sim-
ulated annealing solvers, are used to unwrap the images, the
sub-images, and the super-pixel image. The classical TRWS
solver is the one most commonly used in phase unwrapping
and; thus, we use it as a reference to evaluate the accuracy
of the other solvers. The other solvers are QUBO solvers and
demonstrate that our proposed methodology works on various
solvers.

3) Experiments: We conducted three experiments, naming
them simply “Experiment 1”, “Experiment 2”, and “Experi-
ment 3”. In Experiment 1, the first four datasets are tested
and the statistics of each set are reported. Only two solvers
are considered in this experiment, the TRWS solver and the
PTICM solver. This is due to our having limited access to the
other solvers (i.e., Parallel Tempering, Simulated Annealing,
and the D-Wave Annealer). In Experiment 2, four solvers
are used: TRWS, PTICM, Parallel Tempering, and Simulated
Annealing. However, only one image per set is considered. In
Experiment 3, the last four datasets are used to test the TRWS
solver and the D-Wave Annealer.

4) Accuracy metric: We use the matching percentage of
an image with the ground truth as an accuracy metric. That
is the number of pixels in the images that match the number
of pixels in the ground truth divided by the total number of
pixels.

B. Results

This subsection presents a summary of the results of Ex-
periments 1, 2, and 3. The image phase-unwrapping process
consists of two steps: first, unwrapping sub-images and then
constructing and unwrapping the super-pixel images that give
us the final unwrapped image. The average and standard
deviation are reported for the matching percentage for the sub-
images and images for each dataset, for each solver.

1) Experiment 1 Results: This set of results is for the
TRWS and PTICM solvers. Thirty-one images 400 × 400 in
size are used. Thirty images are simulated: 10 are noise-free,
10 have a low level of noise, and 10 have a high level of
noise. One image is real. Each image is subdivided into 400
images 20 × 20 pixels in size. The results are summarized in
Table II. The last two rows in Table II present the results for
the single real image unwrapped, so there is only one value
for the image matching. Fig. 1 shows how close the results
produced by the two solvers are to the ground truth.

2) Experiment 2 Results: This set of results is for the
TRWS, PTICM, Parallel Tempering, and Simulated Annealing
solvers. Only four images 400 × 400 pixels in size are used
in this experiment: one image from each of the datasets #1,
#2, #3, and #4. As there is only one image per set, there
is only a single value for the ground truth matching, (i.e.,



TABLE I
SUMMARY OF THE DATASETS USED

Dataset #1 #2 #3 #4 #5 #6 #7 #8

Description Simulated
noise-free

Simulated
with low

noise

Simulated
with high

noise

Real data Simulated
noise-free

Real data Simulated
noise-free

Real data

# images 10 10 10 1 1 1 1 1
Image size 400×400 400×400 400×400 400×400 100×100 100×100 100×100 100×100

Sub-image size 20×20 20×20 20×20 20×20 16×16 16×16 10×10 10×10
Signal generator Perlin

noise
Perlin
noise

Perlin
noise

- Perlin
noise

- Perlin
noise

-

Noise in SNR - 15 db 13 db 8.1 db - 8.1 db - 8.1 db
Max ambiguity 4 4 4 4 4 4 4 4

Connectivity Four
neigh-
bours

Four
neigh-
bours

Four
neigh-
bours

Four
neigh-
bours

Four
neigh-
bours

Four
neigh-
bours

Four
neigh-
bours

Four
neigh-
bours

TABLE II
RESULTS OF THE UNWRAPPING OF SUB-IMAGES AND THE OVERALL IMAGE UNWRAPPING FOR THE TRWS AND PTICM SOLVERS

Dataset Solver Sub-images unwrapping Super-pixel unwrapping
Avg matching (%) STD matching Avg matching (%) STD matching

#1 (Noise-Free Simulated Data) TRWS 100 0 100 0
PTICM 98.1 12.000579 99.17 0.319373

#2 (Low-Noise Simulated Data) TRWS 99.96 0.206808 99.96 0.011311
PTICM 97.27 13.753412 98.39 1.102349

#3 (High-Noise Simulated Data) TRWS 98.82 8.503787 99.68 0.111031
PTICM 94.63 15.026709 95.95 1.929165

#4 (Real Data) TRWS 98.79 4.968538 98.97 -
PTICM 97 7.028149 96.63 -

Dataset

G
ro

un
d-

tr
ut

h 
M

at
ch

in
g

90

92

94

96

98

100

Simulated 
noise free

Simulated 
low noise

Simulated 
high noise

Real data

TRWS Subimages TRWS Image PTICM Subimages
PTICM Image

Fig. 1. Set 1 ground truth matching for the unwrapping of sub-images and
the overall image unwrapping

there is no average and no standard deviation). The results are
summarized in Table III. Fig. 2 shows how close the results
produced by the solvers are to the ground truth.

3) Experiment 3 Results: This experiment set is designed to
test our approach on the D-Wave quantum annealing system,
the D-Wave 2000Q. This set of results involve the TRWS
and D-Wave 2000Q solvers. Two images are used in this
experiment: one simulated noise-free image with a maximum
ambiguity of 4, and one real image with a maximum ambiguity
of 4. Each image is subdivided into sub-images 16 × 16 pixels

Dataset

G
ro

un
d-

tr
ut

h 
M

at
ch

in
g

90

92

94

96

98

100

Simulated 
noise free

Simulated 
low noise

Simulated 
high noise

Real data

TRWS PTICM Parallel Tempering
Simulated Annealing

Fig. 2. Set 2 ground truth matching for the overall image unwrapping

and 10 × 10 pixels in size to form in four datasets in total.
The four sets are labelled dataset #5, #6, #7, and #8 in Table I.

Solving a QUBO problem on a quantum annealer requires
embedding (mapping) each binary variable to one physical
qubit or multiple chained (connected) qubits. The embedding
process varies based on the problem and the architecture
of a given quantum annealer. The D-Wave 2000Q annealer
comprises 2048 qubits organized in a 16 × 16 grid of eight-
qubit unit cells. Each qubit is connected to six neighbours
in the Chimera topology [1]. However, faulty qubits curtail



TABLE III
RESULTS OF THE UNWRAPPING OF SUB-IMAGES AND THE OVERALL IMAGE UNWRAPPING FOR THE TRWS, PTICM, PARALLEL TEMPERING, AND

SIMULATED ANNEALING SOLVERS

Dataset Solver Sub-images unwrapping Super-pixel unwrapping
Avg matching (%) STD matching Matching (%)

#1 (Noise-Free Simulated Data)

TRWS 100 0 100
PTICM 99.6 0.638959 99.60

Parallel Tempering 99.37 7.033106 99.87
Simulated Annealing 100 0 100

#2 (Low-Noise Simulated Data)

TRWS 99.24 1.764139 99.21
PTICM 96.64 6.240565 95.45

Parallel Tempering 98.25 9.778803 98.67
Simulated Annealing 98.55 8.438345 99.24

#3 (High-Noise Simulated Data)

TRWS 100 0 99.54
PTICM 98.64 9.862505 95.29

Parallel Tempering 98.15 11.2803 99.41
Simulated Annealing 93.97 17.841954 92.78

#4 (Real Data)

TRWS 98.79 4.968538 98.97
PTICM 97 7.028149 96.63

Parallel Tempering 98.75 1.084935 98.95
Simulated Annealing 99.24 1.310232 98.96

the connectivity and the size of the problems the machine
can handle. D-Wave Systems provides a tool that heuristically
embeds the binary variables to the quantum annealer’s qubits.
The tool does not provide the optimal embedding in terms of
keeping more related qubits closer to each other. Hence, we
used a manual approach to embed the logical binary variables
onto physical qubits.

In manually embedding our variables onto qubits, we strived
to produce a symmetric embedding. The symmetry of the em-
bedding contributed to an improved solution quality. Further,
we mapped each integer label to a single Chimera cell. The
largest image our embedding approach can map onto the D-
Wave 2000Q is 16 × 16 pixels in size. Bypassing the faulty
qubits resulted in asymmetries, which lowered the quality of
the solutions. To avoid such issues, we have experimented with
smaller images 10 × 10 pixels in size which, when mapped,
avoid the faulty qubits with a concomitant increase in the
quality of the solution. The results are summarized in Table IV.

4) InSAR Images Samples: Fig. 3 shows samples of the
unwrapped images using the super-pixel method.

5) Discussion: The results of Experiment 1 and
Experiment 2 show that the super-pixel decomposition
gives results that are very close to the ground truth, where
the highest match is 100% and the lowest is 92.78%. The
TRWS algorithm gives the best results, followed by simulated
annealing, and then parallel tempering.

Experiment 3 shows very preliminary results in using the
D-Wave quantum annealing system for the phase-unwrapping
problem. The results show that the phase-unwrapping problem
is amenable to be solved using a real quantum annealer.
However, the quality of the solution depends greatly on the
embedding.

The approach works with QUBO solvers by overcoming
the problem size limitation, enabling the capability to use a
quantum annealing system to unwrap large InSAR images.
In addition, it can be parallelized, which can speed up the

unwrapping process.

V. CONCLUSION

We formulated the phase-unwrapping problem of InSAR
imaging as a QUBO problem, which we solved using a
variety of QUBO solvers. To deal with large images, we
devised a divide-and-conquer method, in which a large image
is decomposed into smaller images for which the phase-
unwrapping problem is solved individually. We then derived
another QUBO formulation based on these individual solu-
tions. The solving of this QUBO problem yields additive
integer factors that, when applied to the individual solutions,
gives a solution that is very close to the global optimum.

We have tested our approach on a variety of software-
implemented QUBO solvers and the D-Wave 2000Q annealer,
and for a variety of both synthetic and real images. The
solutions derived by our method are either identical to the
ground truth or have less than 5% of pixels differing from the
ground truth. The accuracy of the results is critically dependent
on the specific annealer employed, as annealers yield good
suboptimal solutions.

The main complexity of our experiments with the D-Wave
2000Q annealer was the mapping of the binary variables of
our problem to the machines physical qubits. The machine
has only limited connectivity between qubits. If the geometry
of the problem does not match that of the machine itself,
chains of qubits must be formed to ensure that the appropriate
topology is achieved. In our experiments, the results we
obtained differed from the ground truth by a maximum of 15%
of the pixels. This lower-quality result was observed when
large images were processed, which necessitated the use of
all the qubit cells in the machine. As such, the quality of the
solution was affected by the faulty qubits and the asymmetries
introduced in bypassing them. When smaller images were
involved, which enabled the non-involvement of the faulty
cells, the quality of the solutions improved drastically, reaching
from 93.2% to 100% of the optimum.



TABLE IV
RESULTS OF THE UNWRAPPING OF THE SUB-IMAGES AND THE OVERALL IMAGE UNWRAPPING FOR THE TRWS AND D-WAVE SOLVERS

Dataset Sub-image size Solver Sub-images unwrapping Avg matching
Avg matching (%) STD matching normalized to TRWS (%)

#5 (Noise-Free Simulated Data) 16×16 TRWS 100 0 100
D-Wave 85.47 16.52 85.47

#6 (Real Data) 16×16 TRWS 87.5 2.36 100
D-Wave 87.42 2.46 99.91

#7 (Noise-Free Simulated Data) 10×10 TRWS 100 0 100
D-Wave 100 0 100

#8 (Real Data) 10×10 TRWS 93.2 1.92 100
D-Wave 93.2 1.92 100

Wrapped simulated image Wrapped real image

Unwrapped simulated image Unwrapped real image

Simulated image ground truth Real image ground truth
Fig. 3. Samples from the images unwrapped using the super-pixel approach. The left-hand column shows the unwrapping of a simulated high-noise image
while the right-hand column shows the unwrapping of a real image. Top: the wrapped images; middle: the unwrapped images; bottom: the ground truth images
to compare against.

In conclusion, we have successfully demonstrated that the
SAR phase-unwrapping problem can be expressed and solved
as a QUBO problem. By partitioning the problem, we have
been able to obtain high-quality solutions for large images.
The QUBO solvers of the Microsoft QIO toolkit achieve state-
of-the-art solution quality.

Looking ahead, our results suggest that quantum annealers
may have promise as fast solvers for the phase-unwrapping
problem. The high quality of solutions obtained using a
quantum annealer leads us to believe that similarly high-

quality results could be obtained for higher levels of ambiguity
and larger neighbourhoods, with upcoming improvements to
the architecture and qubit connectivity of future quantum
annealers.

It is our intention to quantify the quality of the solutions
obtained and its dependence on the size of the partitions,
along with the complexity and noise content of the images
we process. We intend to study this by using both simulations
and real hardware, especially the forthcoming generation of
quantum annealers.
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APPENDIX A
COST DERIVATION

Denoting by ϕi the phase of pixel i, and by φi the wrapped
phase of the same pixel, we can relate the phase and wrapped
phases of pixels i and j as follows.

ϕi = φi + 2πki (19)

and

ϕj = φj + 2πkj (20)

Further, due to the Nyquist criterion, and if pixels i and j
are neighbouring, then

ϕi − ϕj < 2π . (21)

The wrap function is defined as

wrap (θ) = arg
(
eiθ
)

= θ − b θ
2π
c . (22)

Then, we can reason as follows: from (19) and (20), we
have

ϕi − ϕ = φi − φj + 2π (ki − kj) , (23)

or, applying the wrap(.) function on both sides, we obtain

wrap (ϕi-ϕj) = wrap
(
φi-φj + 2π (ki − kj)

)
⇒

ϕi − ϕj − 2πbϕi − ϕj
2π

c = φi − φj + 2π (ki − kj)

− 2πbφi − φj + 2π (ki − kj)
2π

c .
(24)

Because of the Nyquist assumption (c.f. (21)),

bϕi − ϕj
2π

c = 0

and therefore equation (24) can be written as

ϕi−ϕj = φi−φj+2π (ki − kj)−2πbφi−φj+2π(ki−kj)
2π c ⇒

ϕi−ϕj = φi−φj+2π (ki − kj)−2πbφi − φj
2π

+(ki − kj)c ⇒

ϕi−ϕj = φi−φj+2π (ki − kj)−2πbφi − φj
2π

c−2π (ki − kj) ,

as (ki − kj) is an integer. Therefore,

ϕi − ϕj = φi − φj − 2πbφi − φj
2π

c = wrap (φi − φj) . (25)

Using equation (25) and (23), we obtain

ϕi − ϕj = φi − φj + 2πbki − kjc = wrap (φi − φj)⇒

ki − kj =
wrap (φi − φj)− (φi − φj)

2π
. (26)

Denoting

aij
def
=

wrap (φi − φj)− (φi − φj)
2π

, (27)

equation (26) is written as

ki − kj = aij ⇒ ki − kj − aij = 0. (28)

This equation is the basis of the cost function the optimiza-
tion of which will produce appropriate values for the labels
ki.

The unwrapping problem can then be expressed as an
optimization problem of the cost function

E =
∑

(s,t)∈A

Wst|kt − ks − ast| , (29)

that is,

argmink =
∑

(s,t)∈A

Wst|kt − ks − ast| , (30)

where ki are the labels that will determine the original phase
as per Equation (1), A is the set of pixels in the SAR image,
and Wst are weights defining the neighbourhood structure.
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