
Quantum Multiple Kernel Learning

Seyed Shakib Vedaie,1, 2 Moslem Noori,1 Jaspreet S. Oberoi,1, 3 Barry C. Sanders,2 and Ehsan Zahedinejad1

11QB Information Technologies (1QBit), Vancouver, BC, Canada
2Institute for Quantum Science and Technology, University of Calgary, AB, Canada

3School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada

Kernel methods play an important role in machine learning applications due to their conceptual
simplicity and superior performance on numerous machine learning tasks. Expressivity of a ma-
chine learning model, referring to the ability of the model to approximate complex functions, has
a significant influence on its performance in these tasks. One approach to enhancing the expres-
sivity of kernel machines is to combine multiple individual kernels to arrive at a more expressive
combined kernel. This approach is referred to as multiple kernel learning (MKL). In this work, we
propose an MKL method we refer to as quantum MKL, which combines multiple quantum kernels.
Our method leverages the power of deterministic quantum computing with one qubit (DQC1) to
estimate the combined kernel for a set of classically intractable individual quantum kernels. The
combined kernel estimation is achieved without explicitly computing each individual kernel, while
still allowing for the tuning of individual kernels in order to achieve better expressivity. Our simu-
lations on two binary classification problems—one performed on a synthetic dataset and the other
on a German credit dataset—demonstrate the superiority of the quantum MKL method over single
quantum kernel machines.

I. INTRODUCTION

Noisy, intermediate-scale quantum (NISQ) technolo-
gies have enabled the demonstration of quantum
supremacy—the first milestone in quantum information
processing [1, 2]. The next milestone in quantum com-
puting will be the development of applications that lever-
age the limited quantum resources offered by NISQ de-
vices to demonstrate a quantum advantage for specific
tasks. An example of such a task is the teaching of
computers to learn from data—a fundamental problem
in artificial intelligence. Despite recent progress in using
quantum information processing for machine learning ap-
plications [3], we are still in an exploratory phase in terms
of our understanding of the potential capacity of quan-
tum machine learning for solving real-world problems.

Currently, there exist several quantum machine learn-
ing algorithms that employ NISQ technologies. There
are multiple examples within the area of quantum neu-
ral networks [4–6] and some others in the area of quan-
tum kernel methods [7, 8]. The basic idea behind kernel
methods is to use a kernel function as a measure of sim-
ilarity between two data samples. This similarity mea-
sure is then used in various machine learning methods for
solving classification or regression problems. In the age
of complex deep learning methods, kernel methods [9],
despite their simplicity, are still one of the widely used
tools in machine learning, especially when the dataset is
small [10, 11].

Recently, a quantum kernel machine has been pro-
posed [12] that uses a non-universal quantum comput-
ing model called deterministic quantum computing with
one qubit (DQC1) [13]. Despite its non-universality,
quantum algorithms that use DQC1 can efficiently solve
a wide range of important classically intractable prob-
lems [14–16]. To this date, all efforts to efficiently sim-
ulate DQC1 using classical computing resources have

failed [17], whereas its experimental realization across
various quantum platforms has been successfully demon-
strated [18–21]. The key idea in this method is to use
the trace of a unitary operator as a kernel function to
represent the similarity between two data samples in a
high-dimensional quantum feature space [12]. For a uni-
tary operator whose trace is classically intractable to
compute, DQC1 provides an exponential speed-up over
any known classical algorithm to estimate the normal-
ized trace. As a result, a quantum advantage in kernel
estimation is achieved for classically intractable kernels.

One way to improve the efficacy of a machine learning
model is to enhance its expressivity, referring to the abil-
ity of the model to approximate complex functions. One
of the ways to enhance the expressivity of kernel methods
is to combine multiple kernels in order to arrive at a more
expressive combined kernel [22]. This approach is called
multiple kernel learning (MKL). In principle, each kernel
in the combination can represent a unique notion of simi-
larity for a specific subset of data features. Recent appli-
cations of MKL include anomaly detection [23], hetero-
geneous data integration [24], a recommendation system
for heart disease diagnosis [25], and feature selection [26].

Our main contribution in this work is to propose a mul-
tiple kernel learning method called QMKL that leverages
the power of DQC1 to efficiently estimate the combined
kernel of a set of classically intractable quantum kernels.
In its most general form, we consider the combination
to be a weighted sum or product of more than one pa-
rameterized quantum kernels. In our method, the esti-
mation of the combined kernel is achieved without ex-
plicitly computing each individual kernel while allowing
for the tuning of the combined kernel to achieve bet-
ter expressivity [27]. In contrast, tuning each individual
parameterized quantum kernel can be performed via a
variational quantum circuit [28] where the performance
of the kernel-based model can be improved by varying

ar
X

iv
:2

01
1.

09
69

4v
1

 [
qu

an
t-

ph
]

 1
9

N
ov

 2
02

0

2

the parameters of the underlying quantum circuit.
To show the efficacy of our quantum machine learning

method, we consider two classification tasks: a synthetic
dataset and a German credit dataset [29]. The results
of our simulations show the superiority of QMKL over a
single quantum kernel. Compared to single quantum ker-
nel learning (SQKL), QMKL improves the average test
accuracy by 21.69% and 2.11% for the synthetic dataset
and the German credit dataset, respectively.

This work is structured as follows. In Section II, we
provide a background on kernel methods and DQC1 and
the connection between them. We also give an overview
of the MKL approach. In Section III, we discuss our
main contribution comprising different ways to combine
quantum kernels using DQC1. Section IV lays out the
details of the simulations we perform. We report our re-
sults in Section V and discuss the efficacy of our proposed
method on the benchmarking problems in Section VI, be-
fore giving our conclusion.

II. BACKGROUND

The proposed QMKL method consists of several com-
ponents. In what follows, we provide a brief background
on each of these components comprising kernels meth-
ods, the DQC1 computing model, and its applications
in kernel methods. We conclude the section by giving a
summary of classical MKL.

A. Kernel Methods

Without loss of generality, here we explain kernel
methods for the case of classification problems in super-
vised machine learning. In a classification problem, we
are given a dataset D = {xi, yi}i=1,...,N where xi ∈ Rp,
yi ∈ {−1,+1}, and N is the total number of data sam-
ples. Let us consider X ⊂ Rp and Y ⊂ {−1,+1} as the
sets that contain the feature data (each xi) and the label
data (each yi), respectively. The goal in such a learn-
ing task is to find a function f : X → Y on the pairs
of feature-label data, such that, given a set of unseen
feature data, f can predict the corresponding label data
with a high probability.

To improve the separability of the classes in a dataset,
we can transform them from their original space to a
higher-dimensional Hilbert space, denoted by H (see
Fig. 1). In machine learning terminology, H is often re-
ferred to as a feature space. Such a transformation is
achieved by applying a feature map

Φ :X → H, (1)

xi → Φ(xi).

By training a machine learning algorithm in H instead
of Rp, we aim to find the function f over the pairs
{Φ(xi), yi}i=1,...,N . The main bottleneck here is to ex-
plicitly calculate Φ for the data samples, as it becomes

Φ(·)
a) b)

FIG. 1. Example of the role of a kernel function for a) a
binary classification task of blue vs. yellow classes. Using an
explicit feature map, Φ(·), one can transform the features of
each data sample into a b) higher-dimensional feature space
where the two classes become linearly separable. The kernel
function is evaluated as the inner product of the two data
points in the feature space.

computationally challenging as the dimensionality of the
feature space increases.

Kernel methods take advantage of the fact that the
mapping of the feature data can be achieved without
concern for the dimensionality of the feature space. The
key idea behind kernel methods is that, in order to find
the function f , one does not necessarily need to know
the explicit form of feature map Φ—only the overlap
of the points in the feature space. This overlap rep-
resents a measure of similarity between the features of
any two data samples and is called the kernel function,
k : X × X → R.

For two feature data xi and xj , we have

k(xi,xj) := 〈Φ(xi),Φ(xj)〉, (2)

where 〈· , ·〉 denotes the inner product. Through the rep-
resenter theorem [30, 31], we can express the function
f , which we call a base-learner, as the weighted sum of
kernel functions:

f(x) =

N∑

i=1

βik(xi,x) , (3)

where βi ∈ R is an element of the N -dimensional vector
β, the elements of which we call base-learner parameters.

B. DQC1

Figure 2(a) shows the structure of the quantum circuit
used in DQC1 for normalized trace estimation of a uni-
tary operator. The circuit employs a single control qubit
which is initialized in ρ = |0〉〈0| and n register qubits
which are initialized in a fully mixed state ρn = In

2n where
In is the n-qubit identity matrix. The unitary operators
H (here referring to a Hadamard gate) and Un act on
the control qubit and register qubits, respectively. The

3

⇢n
<latexit sha1_base64="mQUmK1nhRKsitMmAIOemohHUl+0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0V9Bj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNjhnoruqWyn7Fn4EskyAnZchR65a+Oj3NsoQrZJJa2w78FMMxNSiY5JNiJ7M8pWxI+7ztqKIJt+F4du2EnDqlR2JtXCkkM/X3xJgm1o6SyHUmFAd20ZuK/3ntDOPrcCxUmiFXbL4oziRBTaavk54wnKEcOUKZEe5WwgbUUIYuoKILIVh8eZk0zivBRcW/vyxXb/I4CnAMJ3AGAVxBFe6gBnVg8AjP8ApvnvZevHfvY9664uUzR/AH3ucPpJiPKg==</latexit>

H
<latexit sha1_base64="EcQsaJaiY51tEfujEn/I6KA5pq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJerd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBniOMzg==</latexit>

Un
<latexit sha1_base64="Pq3s5v/wOMk/hrcvRHZyt08A1dc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eKxhbaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivd+z3Zq9bcujsDWSZeQWpQoNmrfnX7CctilIYJqnXHc1MT5FQZzgROKt1MY0rZiA6wY6mkMeogn506ISdW6ZMoUbakITP190ROY63HcWg7Y2qGetGbiv95ncxEV0HOZZoZlGy+KMoEMQmZ/k36XCEzYmwJZYrbWwkbUkWZselUbAje4svL5PGs7p3X3buLWuO6iKMMR3AMp+DBJTTgFprgA4MBPMMrvDnCeXHenY95a8kpZg7hD5zPHzN8jbw=</latexit>

=<latexit sha1_base64="2wsinhV7OEj9020G2B+xBypL2+k=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKehGKXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7qZ+6wmV5rF8MOME/YgOJA85o8ZK9ZteqexW3BnIMvFyUoYctV7pq9uPWRqhNExQrTuemxg/o8pwJnBS7KYaE8pGdIAdSyWNUPvZ7NAJObVKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa89jMuk9SgZPNFYSqIicn0a9LnCpkRY0soU9zeStiQKsqMzaZoQ/AWX14mzfOKd1Fx65fl6m0eRwGO4QTOwIMrqMI91KABDBCe4RXenEfnxXl3PuatK04+cwR/4Hz+AI13jMM=</latexit>

H
<latexit sha1_base64="EcQsaJaiY51tEfujEn/I6KA5pq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJerd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBniOMzg==</latexit>

⇢n
<latexit sha1_base64="mQUmK1nhRKsitMmAIOemohHUl+0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0V9Bj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNjhnoruqWyn7Fn4EskyAnZchR65a+Oj3NsoQrZJJa2w78FMMxNSiY5JNiJ7M8pWxI+7ztqKIJt+F4du2EnDqlR2JtXCkkM/X3xJgm1o6SyHUmFAd20ZuK/3ntDOPrcCxUmiFXbL4oziRBTaavk54wnKEcOUKZEe5WwgbUUIYuoKILIVh8eZk0zivBRcW/vyxXb/I4CnAMJ3AGAVxBFe6gBnVg8AjP8ApvnvZevHfvY9664uUzR/AH3ucPpJiPKg==</latexit>

H<latexit sha1_base64="EcQsaJaiY51tEfujEn/I6KA5pq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJerd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBniOMzg==</latexit>

H<latexit sha1_base64="EcQsaJaiY51tEfujEn/I6KA5pq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJerd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBniOMzg==</latexit>

H<latexit sha1_base64="EcQsaJaiY51tEfujEn/I6KA5pq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJerd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBniOMzg==</latexit>

H<latexit sha1_base64="EcQsaJaiY51tEfujEn/I6KA5pq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJerd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBniOMzg==</latexit>

⇢
<latexit sha1_base64="ni/+0iwD0rQ9q/+mh7EN22QpPXw=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMegF48RzAOSJcxOZrND5rHMzAoh5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3woZyJmnLMstpN9UUi4jTTjS+y/3OE9WGKfloJykNBR5JFjOCbS71daIG1Zpf9+dAqyQoSA0KNAfVr/5QkUxQaQnHxvQCP7XhFGvLCKezSj8zNMVkjEe056jEgppwOr91hs6cMkSx0q6kRXP198QUC2MmInKdAtvELHu5+J/Xy2x8E06ZTDNLJVksijOOrEL542jINCWWTxzBRDN3KyIJ1phYF0/FhRAsv7xK2hf14LLuP1zVGrdFHGU4gVM4hwCuoQH30IQWEEjgGV7hzRPei/fufSxaS14xcwx/4H3+ACBWjkk=</latexit>

H<latexit sha1_base64="EcQsaJaiY51tEfujEn/I6KA5pq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJerd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBniOMzg==</latexit>

H<latexit sha1_base64="EcQsaJaiY51tEfujEn/I6KA5pq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJerd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBniOMzg==</latexit>

H<latexit sha1_base64="EcQsaJaiY51tEfujEn/I6KA5pq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJerd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBniOMzg==</latexit>

H<latexit sha1_base64="EcQsaJaiY51tEfujEn/I6KA5pq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJerd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBniOMzg==</latexit>

⇢
<latexit sha1_base64="ni/+0iwD0rQ9q/+mh7EN22QpPXw=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMegF48RzAOSJcxOZrND5rHMzAoh5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3woZyJmnLMstpN9UUi4jTTjS+y/3OE9WGKfloJykNBR5JFjOCbS71daIG1Zpf9+dAqyQoSA0KNAfVr/5QkUxQaQnHxvQCP7XhFGvLCKezSj8zNMVkjEe056jEgppwOr91hs6cMkSx0q6kRXP198QUC2MmInKdAtvELHu5+J/Xy2x8E06ZTDNLJVksijOOrEL542jINCWWTxzBRDN3KyIJ1phYF0/FhRAsv7xK2hf14LLuP1zVGrdFHGU4gVM4hwCuoQH30IQWEEjgGV7hzRPei/fufSxaS14xcwx/4H3+ACBWjkk=</latexit>

a) c)

b)

· · ···
·

··
·

Un(xi,xj) UD(xj) U †D(xi)

UD(xj) = V1(xj) VD(xj)

FIG. 2. a) Trace estimation circuit for DQC1. The initial state of the control qubit and register qubits are denoted by ρ and
ρn, respectively. H is the standard Hadamard gate and Un acts on the register qubits. b) DQC1 circuit for estimating the
kernel function for the features of the two data samples xi and xj . UD(xj) is called the encoding block. c) Example of an
encoding pattern where each Vi is a unitary operators defined by Eq. (9).

initial state ρi = ρ ⊗ ρn of the quantum system evolves
under the unitary operator U = |0〉〈0| ⊗ In + |1〉〈1| ⊗ Un.

Taking the partial trace over the register qubits, the
final state of the control qubit, ρf, becomes

ρf =
1

2

[
1 tr

[
ρnU

†
n

]

tr [ρnUn] 1

]
, (4)

where tr [·] denotes the trace operator. Considering that
ρn is a fully mixed state, the real (Re) and imaginary (Im)
parts of the normalized trace of Un can be estimated
by measuring the expected value, denoted by 〈·〉, of the
Pauli-X (X) and Pauli-Y (Y) operators as follows:

〈X〉ρf = tr [ρfX] = Re (tr [ρnUn]) =
1

2n+1
Re (tr [Un]) ,

(5)

〈Y 〉ρf = tr [ρfY] = −Im (tr [ρnUn]) = − 1

2n+1
Im (tr [Un]) .

In order to estimate the expected values of the operators
in the equations labelled (5), one needs to evolve the
quantum system repeatedly to collect enough statistics
through measurements performed on the control qubit.

The number of measurements required to estimate the
trace with an accuracy ε is in O(ln (1/δ) /ε2), where δ is
the probability that the estimate is farther from the true
value than ε [13, 32]. Hence, the complexity of estimat-
ing the trace with a fixed accuracy is independent of the
number of qubits and scales logarithmically with the er-
ror probability. This makes DQC1 an efficient method for
estimating the normalized trace of unitary operators [32].

C. Quantum Kernel Machine Learning Using
DQC1

One interesting application of DQC1 is estimating the
trace of a unitary operator, which has applications in
the development of classically intractable quantum ker-
nel machines [12]. In what follows, we explain the math-
ematical procedure for using DQC1 in quantum kernel
machines.

To start, let us rewrite Eq. (2) for the case of a quan-
tum kernel function as

k(xi,xj) := 〈Φ(xi)|Φ(xj)〉H , (6)

where Φ(·) represents a quantum feature mapping [12]
and 〈·|·〉 denotes the overlap of two quantum states in
the quantum feature space (i.e., Hilbert space) H.

In order to implement a quantum kernel based on
Eq. (6) using DQC1, we first express Un (see Fig. 2b),
which acts on the register qubits, as a sequential multi-
plication of two unitary operators:

Un(xi,xj) = U†D(xi)UD(xj), (7)

where each of the feature data xi and xj are encoded
into the Un operator (see Fig. 2b). As shown in Fig. 2c,
the operator UD(xi), i ∈ {1, . . . , N}, can be expressed as
the product of D encoding-block operators Vd(xi), d ∈
{1, . . . , D}, and Hadamard gates H:

UD(xi) = VD(xi)H
⊗n · · ·V1(xi)H

⊗n. (8)

The encoding-block operators Vd(xi) can take different
encoding patterns for each encoding block where the fol-
lowing encoding pattern is used to encode any feature
data into the quantum circuit [7]:

Vd(xi) = exp

(
i
∑

C∈S
gC(xi)

∏

k∈C

Zk

)
, (9)

4

where Z refers to the Pauli-Z operator, S refers to the set
of all non-empty subsets of {1, 2, . . . , n}, and gC(·) : X →
R is the encoding function. For instance, for the case of
xi ∈ R2, g{u}(xi) = xu, u ∈ {1, 2}, and g{1,2}(xi) =
(π − x1)(π − x2) [7].

Using Eqs. (5)–(7) and preparing the register qubits
at a pure initial state ρn = |ψ〉〈ψ|, we can relate the trace
estimation of DQC1 to the kernel function estimation as
follows:

tr (ρnUn(xi,xj)) = tr
(
ρnU

†
D(xi)UD(xj)

)
(10)

= tr
(
|ψ〉〈ψ|U†D(xi)UD(xj)

)

= 〈Φ(xi)|Φ(xj)〉H
= k(xi,xj),

where Φ(xj) := UD(xj) |ψ〉.

D. Multiple Kernel Learning

While the representer theorem provides the mathemat-
ical framework for using kernel functions for function
approximation, the performance of kernel-based meth-
ods depends on the ability of the kernel function to ap-
proximate the underlying distribution in the dataset. To
this end, in addition to standard kernels such as linear,
polynomial, and Gaussian, there are other types of cus-
tomized kernels that are used for specific applications,
such as natural language processing [33, 34], pattern
recognition [35], and bioinformatics [36, 37].

In recent years, MKL has been used to boost the ex-
pressivity of kernel machines. The idea behind MKL is
to use a combination of kernel functions instead of a sin-
gle kernel function for learning. Kernel functions can be
combined in many ways. In this work, we focus on two
forms of kernel combinations. The first form is a linear
combination of M different kernels:

k(xi,xi) =

M∑

m=0

αmkm(xi,xj ,θm), (11)

where α = [αm]m=1,...,M ∈ RM is the vector of kernel
weights and θm ∈ Rqm , qm ∈ N, parameterizes each ker-
nel function. We call Θ := {θ1, . . . ,θM} the set of all
kernel parameters. In the second form, kernels are com-
bined multiplicatively as follows:

k(xi,xj) =

M∏

m=0

km(xi,xj ,θm). (12)

There are various methods for choosing α and Θ .
These methods include heuristic [38, 39], optimization-
based [40–43], Bayesian [44, 45], and boosting [46, 47] ap-
proaches. In practice, the performance of such methods
depends on the structure of the dataset and the mathe-
matical form of the combined kernel. In our simulations

of the QMKL method, without loss of generality, we use
an optimization-based method for choosing α and Θ .

One important component in optimization-based
methods is the objective function. Here, we choose the
empirical risk functional, R[f], as the objective function:

R[f(x)] =
1

N

N∑

i=1

L(f(xi), yi) , (13)

where f(x) is obtained through Eq. (3) for the combined
kernel, and L refers to a loss function that measures the
discrepancy between f(xi) and the actual target value
yi.

The optimal choice for the function f , denoted by f∗,
is the one that minimizes the empirical risk:

min
β,Γ

R [f] , (14)

where β is the vector of the base-learner parameters and
Γ := {α,Θ}. One way to minimize the empirical risk is
to alternate between optimizing over Γ and β during the
minimization procedure. This is done by fixing Γ and
minimizing the empirical risk with respect to β and vice
versa. We follow this approach in our simulations.

III. QUANTUM MULTIPLE KERNEL
LEARNING

In this section, we first present different ways of com-
bining kernels, including linear and multiplicative meth-
ods. We then outline the details of the optimization prob-
lems for each of the proposed multiple quantum kernels.

A. Linear Kernel Combination

To start, we present our QMKL method for the case
of additive kernel combination. From Eq. (10), when the
register qubits are initialized in a pure state, the resul-
tant kernel function from the circuit matches the kernel
definition, that is, k(xi,xj) := 〈Φ(xi)|Φ(xj)〉H. On the
other hand, when the initial state of the register qubits
is a parameterized mixed state,

ρn =

M=2n−1∑

m=0

αm |m〉〈m| , (15)

where the sum of the state’s parameters (kernel weights)
is one:

M=2n−1∑

m=0

αm = 1. (16)

5

Now, rewriting Eq. (10) results in the following:

tr (ρnUn(xi,xj)) = tr

(
M∑

m=0

αm |m〉〈m|U†D(xi)UD(xj)

)

=

M∑

m=0

αmtr
(
〈m|U†D(xi)UD(xj) |m〉

)

=

M∑

m=0

αm 〈Φm(xi)|Φm(xj)〉

=

M∑

m=0

αmkm(xi,xj), (17)

where Φm(xj) := UD(xj) |m〉. In other words, by initial-
izing the register qubits in a parameterized mixed state,
the trace is a combined quantum kernel with each αm as
kernel weights.

Note that we can also develop a linear combination of
parameterized quantum kernels. This type of kernel is a
special form of the kernel that we discuss in Section III C.

B. Multiplicative Kernel Combination

In this section, we discuss how a quantum kernel de-
fined as a multiplicative combination of different kernels
can be constructed using DQC1. Figure 3 shows the
corresponding quantum circuit for constructing such a
combined kernel. First, n register qubits are partitioned
into P subsets, denoted by sp, p ∈ {1, 2, . . . , P}. The
number of qubits in each subset is the subset’s cardinal-
ity |sp|. Let us define Θp := {θp1, · · · ,θpD} as the kernel
parameters associated with the p-th subset, where θpd,
d ∈ {1, 2, . . . , D}, is a qpd-dimensional vector, qpd ∈ N.
We also define Λ as the set of kernel parameters for all
P registers, Λ := {Θ1, · · · ,ΘP }. Then, as shown in
Fig. 3a, we can decompose Un into a tensor product of
P parameterized unitary operators:

Un(xi,xj ,Λ) = (18)

U(xi,xj ,ΘP)⊗ U(xi,xj ,ΘP−1)⊗· · ·⊗U(xi,xj ,Θ1),

where each U(xi,xj ,Θp) acts on the p-th register subset.
Following the same approach as we did for Eq. (7), we
express each of the U(xi,xj ,Θp) as the product of two
unitary operators (see Fig. 3b):

U(xi,xj ,Θp) := U†D(xi,Θp)UD(xj ,Θp), (19)

where UD(xi,Θp) contains the information about data
sample xi and kernel parameters Θp. The choice of
UD(xi,Θp) can be any unitary operator which is inef-
ficient to simulate classically; here, we choose [7] (see
Fig. 3c):

UD(xj ,Θp) =

D∏

d=1

Vpd(xj)U(θpd)H
⊗|sp|, (20)

where one choice [7] for U(θpd) is:

U(θpd) = ⊗|qpd|k=1 eiθ
k
pdW , (21)

where W is one of the Pauli-{X,Y, Z} operators [48].
We are now ready to derive a multiplicative kernel

combination using the circuit in Fig. 3. Let us assume
that the register qubits are initialized in a pure state
ρn = ρ1 ⊗ · · · ⊗ ρP , where ρp = |ψp〉〈ψp|, p ∈ {1, . . . , P}.
Following a similar approach as in Eq. (10) and us-
ing (18)–(19), we have

tr (ρnUn(xi,xj ,Λ)) = tr

(
P⊗

p=1

ρpU
†
D(xi,Θp)UD(xj ,Θp)

)

=

P∏

p=1

tr
(
|ψp〉〈ψp|U†D(xi,Θp)UD(xi,Θp)

)

= k(xi,xj ,Θ1) × · · ·× k(xi,xj ,ΘP)

= k(xi,xj ,Λ).

(22)

Thus, tr (ρnUn(xi,xj ,Λ)) is equivalent to a product of
P parameterized kernels. We can then use DQC1 to es-
timate the trace of ρnUn(xi,xj ,Λ), thereby evaluating
the combined kernel k(xi,xj ,Λ).

C. Additive Multiplicative Kernel Combination

To derive Eq. (22), we assume that each ρp is
initialized in a pure state. We now consider an

Mp-dimensional vector αp, αp = [αpi] ∈ R2|sp|
, to ini-

tialize the p-th register in a parameterized mixed state
ρp =

∑
i αpi |i〉〈i|, i ∈ {0, · · · ,Mp = 2|sp| − 1}. Defining

A := {α1, . . . ,αp, . . . ,αP } as the set of all initial states’
parameters, it is straightforward to derive the additive
multiplicative kernel combination for the case of param-
terized mixed states as follows:

tr (ρn(A)Un(xi,xj ,Λ)) =
∑

l

α1lkl(xi,xj ,Θ1) × · · ·×
∑

l

αPlkl(xi,xj ,ΘP).

(23)

The kernel in Eq. (23) reduces to a linear sum of
parameterized kernels for the case of P = 1, where
U (xi,xj ,Θ1) acts on the entire n-qubit register. The
resulting kernel combination becomes the linear kernel
combination discussed in Section III A, where each indi-
vidual kernel is parameterized by Θ1.

D. Optimization Problem

As discussed in Section II D, an optimization problem
can be solved to find the optimal parameters of the com-
bined kernels as well as the kernel weights. Considering

6

FIG. 3. Schematic of a quantum circuit for generating a product of P different kernels. a) The Un(xi,xj ,Λ) operator (see
Fig. 2a) expressed as a tensor product of P unitary operators. b) Each U(xi,xj ,Θp) is decomposed into a product of two
unitary operators, where each contains information about a data sample and kernel parameters Θp, p ∈ {1, . . . , P}. c) One
possible way for encoding xi and Θp by repeating the encoding block D times. For simplicity, we consider the same encoding
block as Eq. (9). In this work, we consistently use p and d as iterators that refer to the p-th register and d-th encoding block,
respectively.

the empirical risk represented by Eq. (13) as the objec-
tive function of the optimization problem, for the case
of a linear kernel combination, the optimization problem
can be formulated as follows:

min
α
R [f] , (24)

M∑

m=0

αm = 1,

0 ≤ αm, ∀m = 1, . . . ,M.

The above constraints follow the properties of the density
matrix, where it is a positive semi-definite operator with
its trace equal to one.

For a general parameterized mixed state, the number
of kernel combination parameters (where a kernel pa-
rameter is denoted αm), grows exponentially with the
number of register qubits because M = 2n − 1. As M
grows exponentially with n, having such a large number
of parameters makes optimizing the kernel combination
an intractable problem. To avoid such a scenario, we
consider a restricted set of mixed states where the num-
ber of the state’s parameters, M , grows linearly with the
number of register qubits. Note that even for restricted
mixed states, the number of individual kernels could still
grow exponentially with the number of register qubits.
It is worth mentioning that, unlike in the case of classi-
cal MKL methods where one must calculate each of the
kernel functions individually, here we use DQC1 to es-
timate the combined kernel function without needing to
calculate each of the individual kernels explicitly.

For the case of multiplicative and additive multiplica-

tive kernels, the optimization problem takes the form

min
β,Ω

R [f] (25)

‖αp‖1 = 1, ∀ p ∈ {1, . . . , P},
0 ≤ αpi, ∀ p ∈ {1, . . . , P},∀ i ∈ {1, · · · , 2|sp|},

where Ω := {A,Λ} and ‖ · ‖1 is the L1-norm. Once
again, the constraints are imposed by the properties of
the density matrix. Depending on the type of kernel, a
certain subset Ω is chosen for optimization.

As with the linear kernel combination, we can restrict
the number of state parameters to simplify the optimiza-
tion problem as well as the initial state preparation, that
is, αp ∈ RMp such that Mp ∈ N grows linearly with |sp|.

IV. SIMULATION SETTINGS

To assess the performance of one type of a kernel over
others for a given machine learning task, one must per-
form a benchmarking procedure. Given the size of, and
level of noise present in, available quantum computers, we
classically estimate the quantum kernel to demonstrate
the performance of QMKL on classification problems.
This classical simulation of the quantum system, how-
ever, becomes computationally challenging as the number
of qubits increases. For this reason, we limit our simu-
lations to quantum systems with fewer than five qubits.
We choose to simulate a linear combination of quantum
kernels as represented in Eq. (17) as a proof of concept
because this choice is largely supported by the success of

7

MKL algorithms that employ a linear sum of kernels in
a variety of applications [49, 50].

We consider two binary classification tasks to investi-
gate the performance of our QMKL method. We perform
each classification task with three different quantum ker-
nel learning models. First, we consider a single quantum
kernel learning (SQKL) model by initializing the register
qubits in a pure state, that is, ρn = (|0〉〈0|)⊗n. Second,
we initialize the register qubits in a fully mixed state
and call the resultant model “fixed-QMKL”, as the ker-
nel weights are equal. For the last model, we parame-
terize the initial state of the register qubits according to
Eq. (15) and choose the parameters of the model to min-
imize the empirical risk represented by Eq. (13) where
we consider a 0–1 loss function [51]. We refer to this last
setting simply as “QMKL”. For each of the three models,
we feed the estimated kernel matrix from the quantum
kernel into a support vector machine to perform the clas-
sification task.

For the case of the QMKL model, we solve the opti-
mization problem formulated as (24). As explained in
Section II D, the optimizer alternates between optimiz-
ing over α and β during the minimization procedure in
order to find the best model parameters.

The first classification problem includes a two-
dimensional synthetic “circles” dataset (see Fig. 4). For
this problem, the corresponding hyperparameters of the
three aforementioned models are the repetition number of
the encoding blocks d and the optimization algorithm’s
parameters for the case of QMKL (see Appendix A 1).
To perform hyperparameter tuning over the synthetic
dataset, we generate 20 random instances of this dataset
(see one representation in Fig. 4). We then randomly
split the data samples into training and test datasets,
with 75% of the data used for the training dataset and
the rest for the test dataset. To restrict the complexity
of the optimization in QMKL, we use only 50% of the
training dataset. Using the best set of parameters, we
then re-train each model on another set of 100 randomly
generated instances of the circles dataset with the same
training and test split ratio while using only 50% of the
training data for optimization.

We compute the average µ and the standard deviation
σ of the classification accuracy of the trained models over
these 100 datasets. The classification accuracy is defined
as the percentage of the correctly classified data samples
with respect to the total number of unseen data samples.
Note that σ reflects the standard deviation of the model’s
performance on different datasets, and not the model’s
error itself.

For the second classification problem, we consider the
“German Credit Data” dataset from [29]. Whereas the
dataset consists of 1000 data samples, each with 20 fea-
tures, we only use four of the features (see Appendix A 2)
for training the models. Using these four features, the
classification accuracy is only slightly worse than when all
20 features are used [52]. Keeping the training and test
split ratios identical to those for the synthetic dataset, we

FIG. 4. Representation of the “circles” dataset generated
using the datasets module from the scikit-learn package
in Python. Each class (yellow or purple) consists of 350 data
samples. The ratio of the inner circle’s (class 1) radius to that
of the outer circle (class 2) is 0.8, and the standard deviation
of the Gaussian noise added to the data is 0.1.

use different random seeds for splitting the dataset into
20 instances of training and test datasets. Again, only
50% of the training data is used in the QMKL optimiza-
tion step. These 20 different splits are used to tune the
hyperparameters of the models. Finally, we compute the
average and standard deviation of the classification accu-
racy of the trained models over 100 different training and
test splits of the dataset for the best set of parameters.

V. RESULTS

In this section, we report on the performance of the
three quantum kernel models, namely, SQKL, fixed-
QMKL, and QMKL, for the two classification tasks.

We begin with the synthetic circles dataset. Table I
summarizes the results of the three quantum kernel mod-
els on the synthetic dataset. We report the results for
both training and test datasets. Figure 5 provides more

Training Test
Method µ σ µ σ
SQKL 81.17 1.8 77.53 3.47
fixed-QMKL 93.72 1.87 91.57 2.9
QMKL 96.05 1.45 94.52 2.15

TABLE I. Average, µ, and standard deviation, σ, of classifi-
cation accuracy of the three quantum kernels on 100 different
instances of the circles dataset (see Fig. 4).

statistical information about the performance of each of
the quantum kernels on the 100 random realizations of

8

the circles dataset. The vertical axis represents the clas-
sification accuracy, denoted by S, of the models. The red
line in each box shows the median classification score for
the associated quantum kernel model. The lower and up-
per edges of the box respectively represent the 25th and
75th percentiles of S. The lower whisker points to the
minimum classification accuracy and the upper whisker
points to the maximum classification accuracy achieved
by each quantum kernel method.

SQKL fixed-QMKL QMKL
80

90

100

SQKL fixed-QMKL QMKL
70
80
90

100

a)

b)

S
S

FIG. 5. Statistics of the classification accuracy, S, of the three
quantum kernel methods on 100 instances of the synthetic
circles dataset (see Fig. 4). The performance of the models
on the a) training and b) test datasets is shown.

Table II summarizes the results of the three trained
models on the German credit dataset. The results for
both the training and test datasets are reported. Further
statistical analysis we performed on the accuracy of the
trained models on this dataset are shown in the form of
box plots in Fig. 6.

Training Test
Method µ σ µ σ
SQKL 77.59 1.00 68.45 2.22
fixed-QMKL 82.02 0.88 70.38 2.4
QMKL 84.29 1.49 69.90 2.12

TABLE II. Average, µ, and standard deviation, σ, of classi-
fication accuracy of the three different quantum kernels used
on the German credit dataset.

VI. DISCUSSION

In this section, we analyze the results of our proposed
method for solving two classification problems. We wish
to highlight that the current state of quantum hardware
technologies and the computationally expensive simula-
tion of quantum evolution prevent us from presenting
a fair comparison of our method against current state-
of-the-art classical machine learning algorithms. There-

SQKL fixed-QMKL QMKL70

80

90

SQKL fixed-QMKL QMKL60

70

80

a)

b)

S
S

FIG. 6. Statistics of the classification accuracy, S, of the
three quantum kernel methods on the 100 different splits of
the German credit dataset. The performance of the models
on the a) training and b) test datasets is shown.

fore, in this work, we focus primarily on the improvement
achieved through using multiple kernels in QMKL over
SQKL.

For the synthetic circles dataset, the fixed-QMKL and
QMKL methods improve the average test accuracy by
18.10% and 21.69%, respectively, over the SQKL model.
This observation shows the improvement achieved by us-
ing multiple kernels for classification for the synthetic
dataset.

The QMKL model achieves the highest average accu-
racy on the 100 training datasets. This indicates that
QMKL has a higher expressive power than the other two
models via its combined kernel parameters. For all three
models, a higher accuracy in the training phase correlates
positively with the test accuracy. This indicates that a
more complex kernel might be able to achieve even bet-
ter test accuracy. Searching for a circuit architecture that
achieves a more expressive kernel is outside the scope of
this work, and thus is not discussed here.

Figure 5 indicates that the QMKL model has greater
classification accuracy quartiles compared to SQKL and
fixed-QMKL models. This is also the case for the min-
imum and the maximum accuracy over 100 instances of
the synthetic dataset. Consistently, both quantum kernel
models that use multiple kernels outperform the SQKL
model.

For the German credit dataset, similar to the circles
dataset, both fixed-QMKL and QMKL models outper-
form the SQKL model by 2.81% and 2.11%, where the
improvement achieved by fixed-QMKL is slightly higher
than the QMKL. As expected, a parameterized kernel,
that is, QMKL, achieves a higher training accuracy than
the other two models, as shown in Fig. 6. However,
QMKL overfits on the training dataset, which results in
a lower average accuracy over the test datasets. This
is consistent with published results, in which the perfor-
mance of neural networks is worse than that of a support

9

vector machine with a linear kernel [52].
In Fig. 6, the median classification accuracy of

fixed-QMKL and QMKL is higher than that obtained
from SQKL for both the training and test datasets. The
minimum training accuracy of QMKL is greater than
that achieved by almost half of the runs for the fixed-
QMKL method. In general, the statistics shown by the
box plots indicate that QMKL demonstrates more ex-
pressive power than both SQKL and fixed-QMKL. How-
ever, when it comes to the test accuracy, as already men-
tioned, overfitting on the training dataset reduces the
generalization power, that is, the ability to predict the
label of unseen data, of the QMKL model.

VII. CONCLUSION

We have introduced a multiple kernel machine learn-
ing method based on DQC1, which combines classically
intractable kernels for machine learning applications. In
particular, we have described the quantum circuit archi-
tectures for a linear sum, as well as a product, of indi-
vidual kernels. We have solved two binary classification

problems, including a synthetic dataset and a German
credit dataset, as a proof of concept of our method.

Using a linear combination of individual kernels, the
method we have proposed has significantly improved the
classification accuracy over that obtained from a sin-
gle quantum kernel method. Using our approach, one
can combine quantum kernels corresponding to different
quantum computer architectures, thereby leveraging the
power of all the available quantum resource simultane-
ously. We leave the study of the effect of different quan-
tum circuits on the expressivity of the combined quantum
kernel for future work.

VIII. ACKNOWLEDGEMENT

Barry C. Sanders acknowledges NSERC support. Par-
tial funding for this work was provided by the Mitacs
Accelerate program. We thank Marko Bucyk for review-
ing and editing the manuscript. We are grateful for the
support we received from Maliheh Aramon, Gili Rosen-
berg, and Elisabetta Valiante pertaining to the use of
HOPE.

[1] J. Preskill, Quantum 2, 79 (2018).
[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C.

Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L.
Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen,
B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,
E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina,
R. Graff, K. Guerin, S. Habegger, M. P. Harrigan,
M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang,
T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang,
D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
A. Korotkov, F. Kostritsa, D. Landhuis, M. Lind-
mark, E. Lucero, D. Lyakh, S. Mandrà, J. R. Mc-
Clean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,
M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill,
M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quin-
tana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank,
K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Tre-
vithick, A. Vainsencher, B. Villalonga, T. White, Z. J.
Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis,
Nature 574, 505 (2019).

[3] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost,
N. Wiebe, and S. Lloyd, Nature 549, 195 (2017).

[4] K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne,
R. Salzmann, D. Scheiermann, and R. Wolf, Nat. Com-
mun. 11, 808 (2020).

[5] E. Farhi and H. Neven, “Classification with quantum
neural networks on near term processors,” (2018),
arXiv:1802.06002 [quant-ph].

[6] M. Schuld, I. Sinayskiy, and F. Petruccione, Quantum
Inf. Process. 13, 2567 (2014).

[7] V. Havĺıček, A. D. Córcoles, K. Temme, A. W. Harrow,
A. Kandala, J. M. Chow, and J. M. Gambetta, Nature
567, 209 (2019).

[8] M. Schuld and N. Killoran, Phys. Rev. Lett. 122, 040504
(2019).

[9] K. Muller, S. Mika, G. Ratsch, K. Tsuda, and
B. Scholkopf, IEEE Trans. Neural Netw. 12, 181 (2001).

[10] T. Hertz, A. B. Hillel, and D. Weinshall, in Proceedings of
the 23rd International Conference on Machine Learning ,
ICML ’06 (Association for Computing Machinery, New
York, NY, USA, 2006) p. 401–408.

[11] Y. Zhang and C. Ling, npj Comput. Mater. 4, 25 (2018).
[12] R. Ghobadi, J. S. Oberoi, and E. Zahedinejhad, “The

power of one qubit in machine learning,” (2019),
arXiv:1905.01390 [quant-ph].

[13] E. Knill and R. Laflamme, Phys. Rev. Lett. 81, 5672
(1998).

[14] D. Poulin, R. Blume-Kohout, R. Laflamme, and H. Ol-
livier, Phys. Rev. Lett. 92, 177906 (2004).

[15] P. W. Shor and S. P. Jordan, Quantum Info. Comput. 8,
681–714 (2008).

[16] S. Boixo and R. D. Somma, Phys. Rev. A 77, 052320
(2008).

[17] A. Datta and G. Vidal, Phys. Rev. A 75, 042310 (2007).
[18] B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G.

White, Phys. Rev. Lett. 101, 200501 (2008).
[19] G. Passante, O. Moussa, C. A. Ryan, and R. Laflamme,

Phys. Rev. Lett. 103, 250501 (2009).
[20] W. Wang, J. Han, B. Yadin, Y. Ma, J. Ma, W. Cai,

Y. Xu, L. Hu, H. Wang, Y. P. Song, M. Gu, and L. Sun,
Phys. Rev. Lett. 123, 220501 (2019).

[21] O. Göktaş, W. K. Tham, K. Bonsma-Fisher, and A. Bro-
dutch, Quantum Inf. Process. 19, 146 (2020).

[22] M. Gönen and E. Alpaydin, J. Mach. Learn. Res. 12,
2211 (2011).

[23] C. Gautam, R. Balaji, S. K., A. Tiwari, and K. Ahuja,
Knowl.-Based Syst. 165, 241 (2019).

http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/ 10.1038/nature23474
http://dx.doi.org/ 10.1038/s41467-020-14454-2
http://dx.doi.org/ 10.1038/s41467-020-14454-2
http://arxiv.org/abs/1802.06002
http://dx.doi.org/10.1007/s11128-014-0809-8
http://dx.doi.org/10.1007/s11128-014-0809-8
http://dx.doi.org/ 10.1038/s41586-019-0980-2
http://dx.doi.org/ 10.1038/s41586-019-0980-2
http://dx.doi.org/10.1103/PhysRevLett.122.040504
http://dx.doi.org/10.1103/PhysRevLett.122.040504
http://dx.doi.org/ 10.1109/72.914517
http://dx.doi.org/10.1145/1143844.1143895
http://dx.doi.org/10.1145/1143844.1143895
http://dx.doi.org/10.1038/s41524-018-0081-z
http://arxiv.org/abs/1905.01390
http://dx.doi.org/10.1103/PhysRevLett.81.5672
http://dx.doi.org/10.1103/PhysRevLett.81.5672
http://dx.doi.org/10.1103/PhysRevLett.92.177906
http://dl.acm.org/citation.cfm?id=2017011.2017012
http://dl.acm.org/citation.cfm?id=2017011.2017012
http://dx.doi.org/10.1103/PhysRevA.77.052320
http://dx.doi.org/10.1103/PhysRevA.77.052320
http://dx.doi.org/10.1103/PhysRevA.75.042310
http://dx.doi.org/10.1103/PhysRevLett.101.200501
http://dx.doi.org/10.1103/PhysRevLett.103.250501
http://dx.doi.org/10.1103/PhysRevLett.123.220501
http://dx.doi.org/10.1007/s11128-020-02642-4
http://jmlr.org/papers/v12/gonen11a.html
http://jmlr.org/papers/v12/gonen11a.html
http://dx.doi.org/ https://doi.org/10.1016/j.knosys.2018.11.030

10

[24] J. Mariette and N. Villa-Vialaneix, Bioinformatics 34,
1009 (2017).

[25] G. Manogaran, R. Varatharajan, and M. K. Priyan, Mul-
timed. Tools Appl. 77, 4379 (2018).

[26] H. Xue, Y. Song, and H.-M. Xu, Knowl.-Based Syst.
191, 105272 (2020).

[27] Y. Du, M.-H. Hsieh, T. Liu, and D. Tao, Phys. Rev.
Research 2, 033125 (2020).

[28] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini,
Quantum Sci. Technol. 4, 043001 (2019).

[29] D. Dua and C. Graff, “UCI machine learning repository,”
(2017).

[30] G. Kimeldorf and G. Wahba, J. Math. Anal. Appl. 33,
82 (1971).

[31] B. Schölkopf, R. Herbrich, and A. J. Smola, in Com-
putational Learning Theory , edited by D. Helmbold and
B. Williamson (Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2001) pp. 416–426.

[32] A. Datta, S. T. Flammia, and C. M. Caves, Phys. Rev.
A 72, 042316 (2005).

[33] S. Filice, G. Castellucci, D. Croce, and R. Basili, in
Proceedings of ACL-IJCNLP 2015 System Demonstra-
tions (Association for Computational Linguistics and
The Asian Federation of Natural Language Processing,
Beijing, China, 2015) pp. 19–24.

[34] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini,
and C. Watkins, J. Mach. Learn. Res. 2, 419 (2002).

[35] J. Shawe-Taylor and N. Cristianini, Kernel Methods for
Pattern Analysis (Cambridge University Press, 2004).

[36] A. A. Nascimento, R. B. C. Prudêncio, and I. G. Costa,
BMC Bioinformatics 17, 46 (2016).

[37] T. Niu, E. Veronese, U. Castellani, D. Peruzzo, M. Bel-
lani, and P. Brambilla, Comput. Math. Methods Med.
2013, 867924 (2013).

[38] H. Tanabe, T. Bao Ho, C. H. Nguyen, and S. Kawasaki,
in 2008 IEEE International Conference on Research, In-
novation and Vision for the Future in Computing and
Communication Technologies (2008) pp. 71–78.

[39] S. Qiu and T. Lane, IEEE/ACM Trans. Comput. Biol.
Bioinform. 6, 190 (2009).

[40] G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui,
and M. I. Jordan, J. Mach. Learn. Res. 5, 27 (2004).

[41] J. Kandola, J. Shawe-Taylor, and N. Cristianini, Opti-
mizing Kernel Alignment over Combinations of Kernel ,
Project Report (2002).

[42] Junfeng He, Shih-Fu Chang, and Lexing Xie, in 2008
IEEE Conference on Computer Vision and Pattern
Recognition (2008) pp. 1–7.

[43] C. S. Ong, A. Smola, and R. Williamson, J. Mach. Learn.
Res. 6, 1043 (2005).

[44] M. Girolami and S. Rogers, in Proceedings of the 22nd
International Conference on Machine Learning , ICML
’05 (Association for Computing Machinery, New York,
NY, USA, 2005) p. 241–248.

[45] T. Damoulas and M. A. Girolami, Pattern Recognit.
Lett. 30, 46 (2009).

[46] K. P. Bennett, M. Momma, and M. J. Embrechts, in
KDD (2002) pp. 24–31.

[47] K. Crammer, J. Keshet, and Y. Singer, in Advances in
Neural Information Processing Systems, Vol. 15, edited
by S. Becker, S. Thrun, and K. Obermayer (MIT Press,
2003) pp. 553–560.

[48] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information: 10th Anniversary Edition

(Cambridge University Press, 2010).
[49] S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky,

K. T. Schütt, and K.-R. Müller, Sci. Adv. 3 (2017).
[50] T. Tang, S. Chen, M. Zhao, W. Huang, and J. Luo, Soft

Comput. 23, 3793 (2019).
[51] S. Shalev-Shwartz and S. Ben-David, Understanding Ma-

chine Learning: From Theory to Algorithms (Cambridge
University Press, 2014).

[52] J. Zurada, Rev. Bus. Inf. Syst. 14 (2010).

Appendix A: Hyperparameter Tuning

In this section, we provide the details of the hyperpa-
rameter tuning method we use for both the synthetic and
German credit datasets.

1. Circles Dataset

To train the quantum kernel models on the synthetic
circles dataset, we choose the encoding block in Fig. 7.
For QMKL, we search over the number of encoding block
repetitions, d, as this parameter plays an important role
in the complexity of the kernel. We use the selected value
of d through this search for both SQKL and fixed-QMKL.
To optimize the kernel weights for the case of QMKL, we
use the COBYLA optimization algorithm from Python’s
scipy package. We realized that this optimizer is sensi-
tive to its parameter “rhobeg”, denoted by h here; there-
fore, we consider it in our hyperparameter tuning proce-
dure. For hyperparameter tuning, we set the maximum
number of iterations in COBYLA to 500 while default
values are used for other arguments. For the case of
QMKL, we define a parameter r which represents the ra-
tio of the training dataset considered in the optimization
of the initial state parameters. While it is trivial that a
greater value of r is desired, to reduce the complexity of
optimization, we explore how different values of r affect
the classification accuracy.

H
<latexit sha1_base64="EcQsaJaiY51tEfujEn/I6KA5pq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJerd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBniOMzg==</latexit>

H
<latexit sha1_base64="EcQsaJaiY51tEfujEn/I6KA5pq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJerd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBniOMzg==</latexit>

RZ(x1)

RZ(x2)
exp

(
g{1,2}(x)Z1Z2

)

FIG. 7. Encoding block used for the circles synthetic dataset.

For hyperparameter tuning, we use 1QBit’s “Hyper-
parameter OPtimization Environment” (HOPE) package
for automated tuning and benchmarking. Figure 8 shows
the results of hyperparameter tuning on two parameters
d and h when QMKL is used. The resultant best param-
eters are d = 2 and h = 0.3. We use these parameters
and r = 0.6 to train QMKL (see Table I). For SQKL
and fixed-QMKL, r and h are irrelevant. We use d = 2
for these two models as well in order to have a fair com-
parison in terms of quantum resource usage for the three
models.

http://dx.doi.org/10.1093/bioinformatics/btx682
http://dx.doi.org/10.1093/bioinformatics/btx682
http://dx.doi.org/10.1007/s11042-017-5515-y
http://dx.doi.org/10.1007/s11042-017-5515-y
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2019.105272
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2019.105272
http://dx.doi.org/ 10.1103/PhysRevResearch.2.033125
http://dx.doi.org/ 10.1103/PhysRevResearch.2.033125
http://dx.doi.org/ 10.1088/2058-9565/ab4eb5
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/https://doi.org/10.1016/0022-247X(71)90184-3
http://dx.doi.org/https://doi.org/10.1016/0022-247X(71)90184-3
http://dx.doi.org/10.1007/3-540-44581-1_27
http://dx.doi.org/10.1007/3-540-44581-1_27
http://dx.doi.org/10.1103/PhysRevA.72.042316
http://dx.doi.org/10.1103/PhysRevA.72.042316
http://dx.doi.org/ 10.3115/v1/P15-4004
http://dx.doi.org/ 10.3115/v1/P15-4004
https://www.jmlr.org/papers/v2/lodhi02a.html
http://dx.doi.org/10.1017/CBO9780511809682
http://dx.doi.org/10.1017/CBO9780511809682
http://dx.doi.org/10.1186/s12859-016-0890-3
http://dx.doi.org/ 10.1155/2013/867924
http://dx.doi.org/ 10.1155/2013/867924
http://dx.doi.org/10.1109/RIVF.2008.4586335
http://dx.doi.org/10.1109/RIVF.2008.4586335
http://dx.doi.org/10.1109/RIVF.2008.4586335
http://dx.doi.org/10.1109/TCBB.2008.139
http://dx.doi.org/10.1109/TCBB.2008.139
https://www.jmlr.org/papers/v5/lanckriet04a.html
https://eprints.soton.ac.uk/259746/
https://eprints.soton.ac.uk/259746/
http://dx.doi.org/ 10.1109/CVPR.2008.4587636
http://dx.doi.org/ 10.1109/CVPR.2008.4587636
http://dx.doi.org/ 10.1109/CVPR.2008.4587636
https://www.jmlr.org/papers/v6/ong05a.html
https://www.jmlr.org/papers/v6/ong05a.html
http://dx.doi.org/10.1145/1102351.1102382
http://dx.doi.org/10.1145/1102351.1102382
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2008.08.016
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2008.08.016
https://doi.org/10.1145/775047.775051
https://proceedings.neurips.cc/paper/2002/file/dd28e50635038e9cf3a648c2dd17ad0a-Paper.pdf
https://proceedings.neurips.cc/paper/2002/file/dd28e50635038e9cf3a648c2dd17ad0a-Paper.pdf
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1017/CBO9780511976667
https://advances.sciencemag.org/content/3/5/e1603015
http://dx.doi.org/ 10.1007/s00500-018-3041-0
http://dx.doi.org/ 10.1007/s00500-018-3041-0
http://dx.doi.org/10.1017/CBO9781107298019
http://dx.doi.org/10.1017/CBO9781107298019
https://doi.org/10.19030/rbis.v14i2.496

11

d r h Stest Strain

FIG. 8. Results of hyperparameter tuning for the synthetic
circles dataset.

2. German Credit Dataset

The German credit dataset contains 1000 data sam-
ples, each with 20 features. In our simulations, we choose
only four out of 20 features, namely, “chequing account
existence”, “duration”, “credit history”, and “employed
since”. We use COBYLA with the same default setting as
the one we use for the case of the circles dataset and em-
ploy the encoding block represented in Fig. 9. It is com-
putationally expensive to simulate models using r = 1;
we therefore use an educated guess for the value of r = 0.5
based on the results from the circles dataset.

H<latexit sha1_base64="EcQsaJaiY51tEfujEn/I6KA5pq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJerd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBniOMzg==</latexit>

H<latexit sha1_base64="EcQsaJaiY51tEfujEn/I6KA5pq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJerd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBniOMzg==</latexit>

RZ(x1)

RZ(x2)
exp

(
g{1,2}(x)Z1Z2

)

H<latexit sha1_base64="EcQsaJaiY51tEfujEn/I6KA5pq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJerd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBniOMzg==</latexit>

H<latexit sha1_base64="EcQsaJaiY51tEfujEn/I6KA5pq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJerd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBniOMzg==</latexit>

RZ(x3)

RZ(x4)
exp

(
g{3,4}(x)Z3Z4

)
exp

(
g{2,3}(x)Z2Z3

)

FIG. 9. Encoding block used for the German credit dataset.

Figure 10 shows the results of the hyperparameter tun-
ing procedure over all sets of combinations of d and h for
QMKL. The best resultant parameters are for the case
of d = 2 and h = 0.38. The final results presented in
Table II are based on these parameters used in the train-
ing of QMKL. For a fair comparison in terms of quantum
resource usage, we use d = 2 for SQKL and fixed-QMKL.

d h Stest Strain

FIG. 10. Results of hyperparameter tuning for the German
credit dataset.

	Quantum Multiple Kernel Learning
	Abstract
	I Introduction
	II Background
	A Kernel Methods
	B DQC1
	C Quantum Kernel Machine Learning Using DQC1
	D Multiple Kernel Learning

	III Quantum multiple kernel learning
	A Linear Kernel Combination
	B Multiplicative Kernel Combination
	C Additive Multiplicative Kernel Combination
	D Optimization Problem

	IV Simulation settings
	V Results
	VI Discussion
	VII Conclusion
	VIII Acknowledgement
	 References
	A Hyperparameter Tuning
	1 Circles Dataset
	2 German Credit Dataset

