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Recently, there has been considerable interest in solving optimization problems by mapping these onto a
binary representation, sparked mostly by the use of quantum annealing machines. Such binary representa-
tion is reminiscent of a discrete physical two-state system, such as the Ising model. As such, physics-inspired
techniques—commonly used in fundamental physics studies—are ideally suited to solve optimization problems
in a binary format. While binary representations can be often found for paradigmatic optimization problems,
these typically result in k-local higher-order unconstrained binary optimization cost functions. In this work, we
discuss the effects of locality reduction needed for solvers such as the D-Wave quantum annealer, the Fujitsu
Digital Annealer, or the Toshiba Simulated Bifurcation Machine that can only accommodate 2-local (quadratic)
cost functions. General locality reduction approaches require the introduction of ancillary variables which cause
an overhead over the native problem. Using a parallel tempering Monte Carlo solver on Azure Quantum, as well
as k-local binary problems with planted solutions, we show that post reduction to a corresponding 2-local repre-
sentation the problems become considerably harder to solve. We further quantify the increase in computational
hardness introduced by the reduction algorithm by measuring the variation of number of variables, statistics of
the coefficient values, and the entropic family size. Our results demonstrate the importance of avoiding locality
reduction when solving optimization problems.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 64.60.-i

I. INTRODUCTION

In recent years there have been many technological and
algorithmic advances when solving optimization problems,
in particular, in an industrial setting. Sparked by the work
of D-Wave Systems Inc., a whole new field of optimization
based on physical processes has emerged. Specifically, the
development of hardware quantum annealers has stimulated
new ways of analyzing problems previously thought to be in-
tractable.

Despite these advances, the use of quantum annealers for
large-scale industry applications remains limited if not paired
with classical algorithms on CMOS hardware. Being able to
tackle an application requires first having a Boolean represen-
tation of the problem. To this mapping step, in most cases a
variable overhead is associated, which typically makes a prob-
lem harder to solve. However, due to hardware limitations,
only 2-local (quadratic unconstrained binary optimization, or
QUBO) cost functions can be tackled with quantum annealing
hardware. This means that a higher-order binary polynomial
unconstrained optimization problem requires a locality reduc-
tion which can result in a sizable variable overhead. In this
work, we focus on the locality reduction, and do not discuss
additional overheads due to the embedding of a binary prob-
lem onto the hardwired sparse quasi-two-dimensional topol-
ogy of annealing hardware or the effects of analog noise.

The hardware limitations play an important role when solv-
ing problems naturally formulated as a Hamiltonian with

∗The work of H. G. K. was performed before joining Amazon Web Services.

k-local interactions with k > 2. There are various optimiza-
tion problems both in fundamental physics and applications
that are natively k-local. Examples in physics are comput-
ing the partition function of a four-dimensional pure lattice
gauge theory [1, 2], measuring the fault-tolerance in topo-
logical colour codes [3], and solving k-SAT problems with
k > 2. Examples of practical applications are circuit fault di-
agnosis [4, 5], molecular similarity measurement [6], molecu-
lar conformational sampling [7], and traffic light synchroniza-
tion [8].

Quadratization techniques are algorithms used to reduce a
higher-degree multilinear polynomial into a quadratic one [9].
The reduction process can introduce two different types of
overheads. First, the quadratization itself can result in a large
overhead before any solver is applied to the problem of in-
terest. Second, quadratization requires the introduction of ad-
ditional variables and terms. As such, the complexity of the
problem increases and, in turn, so does the time to solution.
Finally, the quadratization process might also introduce fea-
tures (e.g., broader coupler distributions) that can affect the
intrinsic difficulty of the problem. An extensive comparison
between several quadratization methods, highlighting the pros
and cons of each method, has been compiled by Dattani in
Ref. [10].

In this paper, we use Microsoft Quantum’s k-local solvers
based on simulated annealing and parallel tempering Monte
Carlo to measure the time overhead introduced by the quadra-
tization process to reduce an optimization problem with
k-local interaction to its 2-local counterpart. We study un-
constrained problems with a binary representation and planted
solutions and disregard the time it takes for the quadratiza-
tion algorithm to run. Our results demonstrate that the lo-
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cality reduction introduces a large overhead when solving the
problems. Employing a commonly used proxy metric, we
demonstrate that, on average, optimization problems become
much harder to solve when the locality is reduced. Könz et
al. (in prep.) study the embedding overhead when using sparse
hardware topologies. Both complementary studies highlight
the importance of developing new optimization machines and
techniques that can handle k-local cost functions natively on
complete graphs.

This paper has the following structure: in Sec. II, we de-
scribe the benchmark problems used for the experiment; in
Sec. III, we present the setup of the experiment and the met-
rics used to compare performance; in Sec. IV and Sec. V, we
discuss and analyze the results of the experiment; in Sec. VI,
we present our conclusions.

II. BENCHMARK PROBLEMS

In order to study the scaling overhead caused by reducing a
k-local problem to a quadratic (2-local) formulation, we first
generate Ising problems for k = 3 and k = 4. The k-local in-
stances have been generated using the Chook package, which
is publicly available on GitHub; see [11]. Using this pack-
age we are able to construct planted-solution instances, thus
ensuring that the ground state and corresponding energy are
known a priori. The construction of k-local problems is done
by combining problems of lower-order, that is, k ≤ 2.

In this study, 3-local instances have been generated by com-
bining a tile planting problem with Ising spins coupled to a bi-
modal random field, while for 4-local instances, the problems
have been generated by combining two tile planting problems.
The tile planting problems are defined by four subproblem
classes that correspond to unit cycles (plaquettes) with dif-
ferent levels of frustration. A subproblem is constructed by
assigning to the couplers values equal to −1, 1, or 2, accord-
ing to the class to which the subproblem belongs. The class
is assigned with a certain probability, and each instance class
is defined by three probability parameters. We set these pa-
rameters to the default values used in Chook [11]. For each
locality considered, we generate instances with problem sizes
N (number of variables) between 16 and 400.

The k-local instances are then reduced to their quadratic
form using an iterative reduction-by-substitution algo-
rithm [12, 13]. Here, the product of two variables is substi-
tuted by a new auxiliary variable and a penalty term is added
to enforce equality in the ground state. This process is re-
peated until the final function becomes quadratic. Tuning the
value of the energy penalty term is extremely important: a
small value could return a 2-local problem not having the
same optimum as the original higher-order problem. There-
fore, a large value is commonly used in various implementa-
tions of this algorithm. The penalty value can grow to be very
large if high values of k are being reduced. This can pose
issues when attempting to solve problems on current analog
quantum annealing hardware, because large coefficients am-
plify the effects of the analog noise. The reduction of k-local
problems in this work is done via the Hobo2Qubo function

available through 1QBit’s 1Qloud Platform [14], which uses
a tight bound for the penalty coefficient and sets it indepen-
dently for each reduced term. The computational time re-
quired to reduce a single instance is negligible with respect to
the time required by the solver. Moreover, the reduction from
k-local to 2-local is known to scale in polynomial time [13],
that is, it should be irrelevant in the thermodynamic limit.

The sizes and densities of the 2-local instances obtained
after reduction from 3-local and 4-local instances are shown
in Tables I and II, respectively. The number of variables in-
creases considerably when reducing locality from k-local to
2-local, as can be expected for a reduction-by-substitution al-
gorithm.

The density of a k-local instance ρ is calculated as

ρ =
1

k − 1

k∑
kt=2

(N − kt)!kt!

N !
Ekt , (1)

where k is the locality of the polynomial. The sum is taken
over all the degrees in the polynomial running from kt = 2
to kt = k, Ekt is the number of individual terms with degree
kt, and N is the number of variables in the polynomial. For
2-local instances, this expression is reduced to the common
graph density expression. Notice that, for all problems, the
densities decrease slightly post locality reduction.

TABLE I: Reduction of 3-local problems to 2-local problems. Den-
sities for each instance are calculated as per Eq. (1). The mean values
(denoted by an overbar) are calculated over the 30 instances that have
been generated. The number of variables of the reduced problems in-
creases by a factor ∼ 3.

3-local 2-local reduction
N ρ̄ N̄ ρ̄
16 0.568 ± 0.020 46.73 ± 0.573 0.329 ± 0.009
64 0.398 ± 0.014 192.0 0.295 ± 0.003

144 0.364 ± 0.008 432.0 0.294 ± 0.002
256 0.352 ± 0.007 768.0 0.294 ± 0.002
400 0.345 ± 0.005 1200.0 0.294 ± 0.001

TABLE II: Reduction of 4-local problems to 2-local problems. Den-
sities for each instance are calculated as per Eq. 1. The mean values
(denoted by an overbar) are calculated over the 30 instances that have
been generated. The number of variables of the reduced problems in-
creases by a factor ∼ 6.

4-local 2-local reduction
N ρ̄ N̄ ρ̄
16 0.615 ± 0.023 76.5 ± 2.0 0.301 ± 0.013
64 0.295 ± 0.017 448.5 ± 4.0 0.167 ± 0.004

144 0.210 ± 0.008 887.6 ± 2.2 0.176 ± 0.002
256 0.179 ± 0.007 1501.3 ± 3.6 0.173 ± 0.002
400 0.163 ± 0.004 2248.3 ± 3.6 0.174 ± 0.001
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III. EXPERIMENT SETUP

The simulations are performed with Azure Quantum’s
solvers, which can handle k-local terms natively. There are
two variants of the solvers. The parameter-free version re-
quires the user to enter only a timeout and automatically opti-
mizes the parameters to find solutions to binary cost functions
to high probabilities. The standard solvers require parameter
optimization to obtain the optimal scaling.

A. Setup

For the experiments, we use the parameter-free
ParallelTempering (v1.0) solver. The best values
for temperatures, number of sweeps, and number of replicas
are calculated internally and are customized for each sub-
mitted problem individually. The only parameter to set is
timeout, which is the time spent in the core solver loop
(in seconds). It is worth specifying that timeout does
not include the time spent by the solver to calculate the
parameters that are used during the annealing process. The
total time the solver needs to solve the problem is referred to
as runtime. The advantage of using a parameter-free solver
is that no tuning experiment is necessary. The disadvantage
is that the runtime we measure includes both the time to
calculate the parameters and the time to solve the problem. At
the time of running the experiment, the parameters calculated
by the solver are not returned to the user in the current
implementation. As such, we cannot list them in this work.

The benchmark experiment consists of solving 30 random
instances for each system size and locality, as well as their
respective 2-local reduction (see Tables I and II for details).
For each of these instances, we perform 30 runs to gather
statistics. We set timeout = 100. In cases when 100 is
not enough time to find the ground-state energy, we increase
timeout to 500.

B. Metrics

The primary objective of our benchmark experiment is to
quantify how the computational effort in solving a problem
scales as the size of the problem input increases. The com-
mon approach is to measure the time to solution (TTS). We
calculate the TTS following the approach defined in Ref. [15]:

TTS = τR99, (2)

where R99 is the number of runs required to find the ground-
state energy with a probability of 99% and τ is the time it takes
to run the algorithm once (i.e., the solver output runtime).

Measuring the TTS requires the algorithm to find the
ground-state energy of each problem for at least 50% of the
successive runs performed. When it is not possible to measure
the TTS, because the ground-state energy cannot be deter-
mined sufficiently often, we measure other performance met-
rics, such as the fraction of solved problems and the residual
energies—both defined below.

16 64 144 256 400
N
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FIG. 1: TTS mean value and standard deviation for k-local problems
with k = 3 and k = 4 using the parallel tempering solver.

The fraction of solved problems is defined as the fraction of
runs for which the ground-state energy is found by the solver
divided by the total number of experiments. We have per-
formed a total of 900 runs for each problem size and locality.
The energy is calculated for each problem and each run in the
following way:

R =
EGS − Ebest

EGS
, (3)

where EGS is the known planted ground-state energy of the
problem and Ebest is the best energy found by the algorithm.
The values reported here are obtained by resampling the dis-
tribution of residuals over all problems and runs.

IV. RESULTS

Figure 1 shows the TTS for planted 3- and 4-local problems
with a number of variables N ranging from 16 to 400 using
the parallel tempering algorithm. Both problem types show
a similar scaling. We have fit an exponential function of the
form TTS = 10α+βN . The results of the fit and the estimated
scaling exponent β are:

β = 0.00737(10) (k = 3)

β = 0.00671(42) (k = 4)

The fraction of solved runs is 100% for all sizes of both 3-
and 4-local problems. However, it is not possible to calculate
the TTS for the 2-local reductions of either the 3- or 4-local
problems. Figure 2 shows the fraction of solved problems
(left panel) and the residual energies (right panel). The 2-
local problems derived from the 4-local instances seem to be
computationally harder to solve than the ones generated from
the 3-local problems. We surmise that the higher the locality,
the harder it would be to solve the 2-local reductions. The
benchmark experiment has been performed with two different
values of the parameter timeout. However, increasing the
timeout does not improve the quality of the results.
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FIG. 2: Fraction solved (left) and residuals (right) of 2-local problems obtained by reducing k-local instances with k = 3 and k = 4. The
dashed line represents the reference for the ideal cases. The benchmark experiment has been performed with two different values of the
parameter timeout. The data show that solving the 2-local versions of the problems is extremely difficult. In fact, we were unable to do a
scaling analysis as the majority of the problems could not be solved.

V. DISCUSSION

The computational hardness of the 3- and 4-local instances
is set in the planting tool Chook by a careful choice of the
couplers from different disorder distributions with varying
levels of frustration. The reduction to 2-local interactions in
the Hamiltonian requires the introduction of auxiliary vari-
ables and penalty terms. The latter, in particular, change the
frustration levels, and thereby the hardness of the problems.
Tables I and II show the increase in the number of variables
when reducing the problems to their 2-local versions. We ob-
serve an increase of a factor of approximately 3 for the 3-local
problems, which increases to a factor ∼ 6 when reducing the
4-local problems. Higher-order Hamiltonians will naturally
require an even larger overhead.

Figure 3 compares the coupler distributions for the 3- and
4-local problems of different system sizes with their corre-
sponding 2-local reductions. The histograms show that, while
the distributions of the 3- and 4-local problem are quite sim-
ilar (note that the x-axis in the plots on the left and the right
sides of the figure have a different scale), the distributions of
their 2-local reductions are significantly wider, in particular
when the reduction occurs from a higher degree of the poly-
nomial. A more quantitative analysis of this effect is shown
in Figure 4. We have calculated the standard deviation and
the kurtosis of the the coupler distributions. While the former
increases by a factor of approximately 10, the latter reduces
by approximately a factor of 5 when reducing the problems
from k-local to 2-local. Having a large dynamic range in the
coupler distributions of the reduced problems typically makes
these harder to solve with physics-based solvers.

To corroborate the aforementioned observation that the
problems become harder when their locality is reduced and,
in turn, the coupler distributions have greater variance, we use
population annealing Monte Carlo (PAMC) [16–21] to mea-
sure the entropic family size ρs. Similar to simulated anneal-

ing (SA) [22], population annealing is a sequential Markov
chain Monte Carlo (MCMC) algorithm in which a population
of “replicas” is slowly annealed toward a target low tempera-
ture. At each temperature, the population is reconfigured via a
resampling process during which some replicas are multiplied
or eliminated to achieve an equilibrium Gibbs distribution of
energies. In a well-thermalized PAMC simulation, a sufficient
number of the original replica families must survive. This can
be quantified by the family entropy, Sf :

Sf = −
R∑
i

ni log ni , (4)

where ni is the fraction of the replicas in the i-th family andR
is the total population size. The average family size in thermal
equilibrium can then be obtained from

ρs = lim
R→∞

R/eSf . (5)

Note that ρs, by definition, is an intensive quantity, and there-
fore independent of the population size R in the thermody-
namic limit. In practice, ρs converges to its true value at a
large but finite population. For all measurements of ρs, we
ensured that such convergence was achieved unless the sim-
ulation timed out. Figure 5 shows ρs averaged over all in-
stances generated for each system size. The 2-local reduction
critically increases the hardness of the problems, especially
for large system sizes. In particular, measuring ρs for the re-
duced version of 4-local problems was possible only for sizes
N = 16 and N = 64. The problems were so hard that the
simulation converged only partially for N = 144, and did not
converge at all during the allocated time for larger problem
sizes.

Our results demonstrate the advantage of solving the opti-
mization problems in their original k-local formulation, and
we expect this result to be independent of the choice of
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FIG. 3: Coupler distributions of k-local problems with k = 3 (left panel) and k = 4 (right panel) for different system sizes N , and their
corresponding 2-local reductions. In the 3-local case the distributions are similar, however weight is redistributed to the tails. In the 4-local
case there is a sizable increase in the width of the distributions post locality reduction.

solver. Reference [5] shows that a simulated quantum anneal-
ing (SQA) algorithm has no advantage in solving a k-local
formulation of a problem, instead of its 2-local reduction, for
N < 20. In particular, they claim that the tunnelling effect
would pass across the large energy barriers introduced by the
reduction. Nevertheless, we would expect such barriers to be-
come wider as the size of the problem increases [23], until no
finite-range tunnelling can be beneficial during the optimiza-
tion.

VI. CONCLUSIONS

We have generated problems with planted solutions having
k-local interactions and reduced them to their corresponding
2-local versions, more amenable to current physics-inspired
optimization tools than the original ones. The reduction has
been performed using a customized version of a classic and
extensively adopted quadratization algorithm. The computa-
tional time required by the reduction algorithm is known to
scale polynomially with the size of the input and thus does not
affect the overall exponential scaling found in current physics-

16 64 144 256 400
N

101

102

103

104

σ
Co

effi
cie

nt
s

100

101

102

103

104

K
ur

to
sis

Co
effi

cie
nt

s

k = 3
k = 3, reduced
k = 4
k = 4, reduced

FIG. 4: Kurtosis and standard deviation calculated from the cou-
pler distributions of k-local problems with k = 3 and k = 4, and
their correspondent 2-local reductions. While the kurtosis decreases,
the standard deviation of the distributions increases noticeably, thus
making the problems harder to solve. Both panels have the same
horizontal axis.
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FIG. 5: Entropic family size, ρs, calculated using population anneal-
ing Monte Carlo for k-local problems with k = 3 and k = 4, and
their corresponding 2-local reductions. The family size of the re-
duced version of k = 4 problems with N = 144 converged only
partially, while for larger sizes the value did not converge during the
allocated timeout. In all cases, a reduction in locality makes the prob-
lems computationally harder to solve.

inspired optimization methods. Using Azure Quantum’s im-

plementation of the ParallelTempering parameter-free
algorithm, designed to handle problems of any locality, we
have attempted to find optima for the native 3- and 4-local
problems, as well as their 2-local reductions. All k-local prob-
lems with k = 3 and k = 4 have been solved to optimal-
ity during the allocated 100-second timeout. The TTS for 4-
local problems is approximately 5 times larger than for the
3-local ones. In contrast, even after increasing the timeout to
500 seconds, the 2-local reductions could not be solved. It is
common practice to apply locality reduction in order to ac-
commodate higher-order polynomial unconstrained optimiza-
tion problems to run on optimizers that natively handle only
quadratic problems. Nevertheless, our results show that doing
so should be, ideally, avoided. As such, investing into creat-
ing hardware and/or software to tackle higher-order problems
should be prioritized.
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