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Quantum computers have the potential to perform accurate and efficient electronic structure cal-
culations, enabling the simulation of properties of materials. However, today’s noisy, intermediate-
scale quantum (NISQ) devices have a limited number of qubits and gate operations due to the
presence of errors. Here, we propose a systematically improvable end-to-end pipeline to alleviate
these limitations. Our proposed resource-efficient pipeline combines problem decomposition tech-
niques for compact molecular representations, circuit optimization methods for compilation, solving
the eigenvalue problem on advanced quantum hardware, and error-mitigation techniques in post-
processing the results. Using the density matrix embedding theory for compact representation, and
an ion-trap quantum computer, we simulate a ring of 10 hydrogen atoms taking into account all
electrons equally and explicitly in the electronic structure calculation. In our experiment, we simu-
lated the largest molecular system on a quantum computer within chemical accuracy with respect
to total molecular energy calculated by the full CI method. Our methods reduce the number of
qubits required for high-accuracy quantum simulations by an order of magnitude in the present
work, enabling the simulation of larger, more industrially relevant molecules using NISQ devices.
They are further systematically improvable as devices’ computational capacity continues to grow.

Electronic structure simulation is an essential tool for
understanding chemical properties of molecules. It is a
basis for contemporary materials design and drug dis-
covery. Performing accurate electronic structure simula-
tions on classical computers requires a great amount of
computational resources. In particular, they grow expo-
nentially with the system size when employing the full
configuration interaction (full CI) method, which cal-
culates the exact solution of the electronic Schrodinger
equation in a given basis set. Quantum computing, a
computing paradigm that leverages the laws of quantum
physics, promises to deliver scalable and accurate elec-
tronic structure calculations [ 2] beyond the reach of
classical computers.

Quantum computing technologies are rapidly advanc-
ing, and there has been major progress in simulat-
ing molecular systems in the last two decades [3HI3].
However, simulating the electronic structure of indus-
trially relevant molecular systems on today’s noisy,
intermediate-scale quantum (NISQ) devices [14] will re-
quire systematically scalable, robust methods that allow
a given problem to be represented by a small number
of qubits and shallow quantum circuits. Without these
methods, the stringent constraints of NISQ devices will
inhibit their ability to perform high-accuracy simulations
of larger molecular systems, particularly those systems
where the electron correlation is strong.

The treatment of electron correlation is necessary for
applying electronic structure calculations to make accu-

rate predictions about the process of a chemical reaction.
Calculating the molecular energy remains a challenge,
even for small systems, without limiting the number of
configurations or the number of electrons active in per-
forming the electronic structure calculations on NISQ de-
vices.

The attempt to perform the largest calculation of the
total energy including electron correlation to date is the
simulation of BeHy using six qubits for the six-electron
problem [7]. Note further that some of the authors of
the present manuscript simulate a water molecule using
a trapped-ion quantum computer. Using a small number
of electron configurations that are known to contribute
significantly to the total energy of the molecule, the en-
ergy estimates obtained were within the widely used mea-
sure for chemical accuracy (1.5936 x 10~ hartrees) when
compared to classically simulated results [9]. Other re-
cent research [I3] reports the simulation of a 12-electron
problem of a chain of 12 hydrogen atoms using 12 qubits,
setting the record in terms of the largest number of qubits
used for a chemistry simulation. However, in this last
study, the energy of the molecular systems considered is
calculated using the Hartree-Fock method, which does
not take electron correlation into account.

One promising direction for alleviating the limitations
encountered by researchers in earlier studies is to lever-
age problem decomposition (PD) techniques. These
techniques admit a more compact representation of a
molecule, and, therefore, enable the explicit inclusion of



more electrons in calculating correlation energies. Prob-
lem decomposition techniques decompose a given molec-
ular system into small subsystems, without sacrificing the
accuracy of the electronic structure simulation for a wide
class of chemical systems [I5HI8]. They have the poten-
tial to substantially reduce the qubit count requirements
for performing electronic structure simulations [T9H27].

In the present work, we develop a PD pipeline based on
the density matrix embedding theory (DMET) [28] 29],
which can be applied to a wide range of molecules. A
quantum algorithm can be used to calculate the elec-
tronic structure of each fragment resulting from the de-
composition. Although our pipeline is agnostic with re-
spect to the choice of quantum algorithm, we choose
the variational quantum eigensolver (VQE) [4] to achieve
shallower quantum circuits amenable to NISQ devices.
Figure [1fA) shows an illustration of the pipeline. Note
that DMET has been applied to quantum simulations of
the Hubbard model [T9] on quantum computers, but not
for molecular systems. We include a trapped-ion quan-
tum computer in our pipeline, as it is a platform that has
performed quantum simulation experiments well [6] [8], [9]
and allows the efficient implementation of quantum al-
gorithms via complete qubit connectivity [30H32]. We
further employ an efficient density matrix purification
algorithm to post-process the experimentally determined
results and mitigate any residual error, by leveraging the
high-quality, two-qubit gates of the trapped-ion hard-
ware.

We use a ring of ten hydrogen atoms to demonstrate
the viability of our pipeline. Taking electron correlation
into account, we demonstrate the viability considering all
electrons equally and explicitly in the electronic structure
calculation. We can thus further widen the applicability
of electron structure calculations on NISQ devices for
larger, industrially relevant molecular systems.

We begin by describing our DMET-based methodol-
ogy for simulating the electronic structure of a molecular
system (see Appendix |A| for further details). Consider
a system described by a second-quantized Hamiltonian
H = H, .+ Hs.., where Hy_. is the one-electron interac-
tion and Ho_, is the two-electron interaction of the entire
molecule. In contrast to simulating the entire system
using H, in DMET, the system to be simulated is di-
vided into small fragments. Each fragment is treated as
an open quantum system, entangled with its surround-
ing environment, or bath. Here we use the mean-field,
Hartree—Fock (HF) solution of the entire molecular sys-
tem as a pre-processing step to find local orbitals that
we use to fragment the molecule. Then, the following it-
erative process, which we call the DMET cycle, initiates.
Once the cycle terminates, the electronic structure cal-
culation of the entire molecule is complete. The DMET
algorithm is shown in Fig. [T{B).

The DMET cycle begins by constructing the bath or-
bitals for each fragment. The bath orbitals describe the
environment that is active for the electronic structure
calculation of the fragment, by virtue of Schmidt decom-

position [33]. Note that, if the bath is large, the descrip-
tion of the bath can be greatly simplified. With the sim-
ple description of the bath, the Hamiltonian H* for each
fragment A, along with its specific bath B, is constructed
according to the equation

HA = Hl-e,AB + H2—e,A - MNAa (1)

where Hi. ap denotes the one-electron interaction
within and across the fragment and the bath, Hy . 4 de-
notes the two-electron interaction within the fragment, p
is the chemical potential, and N4 is the number of elec-
trons in the fragment. See Appendix [B] for details. As
will be discussed shortly, we use a quantum computer to
our advantage in the DMET calculation, efficiently eval-
uating the minimal expectation value of H4, as well as
the number of electrons N4 in fragment A.

Once both the energy expectation value and the num-
ber of electrons for each fragment are computed, we com-
bine them to compute the total system energy, and check
for self-consistency. In particular, we choose to compute
the sum of the number of electrons in each fragment
and check whether the sum is equal to the total num-
ber of electrons in the system. If the sum is within a
pre-specified range with respect to the total number of
electrons, the DMET cycle terminates. If the sum is not
within the specified range, we run the DMET cycle again,
with the chemical potential p updated as the difference
between the sum and the total number of electrons.

As an explicit example of calculating the electronic
structure of a molecule using DMET, we simulate a ring
of 10 hydrogen atoms, Hyp. The molecule is divided into
10 fragments, with one atom per fragment. We allocate
two spin-orbitals each for the fragment and the bath.
This may be compared to a total of 20 spin-orbitals in
the simulation of an entire molecule, which shows a large
reduction in the problem size: a 20-qubit problem is re-
duced to a two-qubit problem. Based on the symmetry
exhibited by the system, we simulate only a single two-
qubit fragment and use the results of the simulation to
infer that the results are identical for every fragment in
the DMET cycle described above.

To estimate the expectation value of the fragment
energy and the number of particles per fragment, we
use VQE [] with the qubit coupled-cluster (QCC)
ansatz [34]. For all calculations we perform, we use
symmetry-conserving Bravyi-Kitaev transformation [35]
36] to transform from a fermion to a qubit basis. The
QCC ansatz operator U (1) is specified according to the
equation

0(r) =[x (”’;P ) , )
k

where 7, is a variational parameter, n, is the number of
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FIG. 1.

Problem decomposition—based pipeline for efficient electronic structure simulation on a quantum computer. (A)

Schematic illustration of the pipeline. (B) The density matrix embedding theory (DMET) algorithm. (C) Pre- and post-
optimizing compilation circuits. 1. Pre-optimizing compilation input. 2. Post-optimizing compilation output. (a) The three
output circuits for ZZ (left), XZ (middle), and XX (right). The gates Mo and M, are chosen appropriately for the different
measurement bases. Note that XZ and ZX result in the same circuit, outside of the relabelling of the qubit indices. See
Appendix Tables and for the numerical values of the gate parameters. (b) Post-optimization circuits for YY, required
for the classical post-processing of our simulation data. See Appendix Table[VITI]for the numerical values of the gate parameters.

multi-qubit Pauli operators Pk, defined as

Tq
Pk = ®f)§k), for ﬁgk) S {X,KZ, I}v (3)
J

where n, is the number of qubits and X, Y, Z, and I are
the Pauli matrices and a single-qubit identity operator,
respectively. While the depth of the circuit rapidly in-
creases as the size of the molecule increases, the QCC
ansatz admits a low-depth quantum circuit compared to
a widely used unitary coupled-cluster single and double
ansatz. The details of the QCC ansatz can be found in

Appendix [C]

We first consider an ansatz state that is a product state

of n, arbitrary single-qubit states, following the method
described in the work of Ryabinkin et al. [37]. We evalu-
ate the expectation value of the mean-field Hamiltonian
with respect to the ansatz state and use VQE, simulated
on a classical computer, to minimize the value. The vari-
ational parameters that result from the optimization cor-
respond to the optimal wavefunction for the mean field.
We next consider a QCC ansatz operator U (7) applied
to the previously determined, mean-field optimized state.
Note that we aim to minimize the expectation value of
the fragment Hamiltonian with respect to the ansatz op-
erator parameters 7. We find which P to include in our
ansatz by computing the derivative of the expectation
value with respect to 73, which can be computed in a
straightforward way when 7 = 0. We remove P} terms



that have small derivative values. Applied to our example
molecule Hyg, we find that Py of XY and Y X have large,
identical derivative values. Note that we carry out the
computation of the derivatives on a classical computer.

We now investigate the performance of DMET with
the QCC ansatz, which we denote as DMET-QCC, on
a classical computer. Specifically, we consider the po-
tential energy curve of the symmetric expansion (i.e., in-
creasing the bond length R while maintaining it for each
pair of neighbouring atoms) of Hjp. We compare the
total energies resulting from the two-qubit DMET-QCC
ansatz with those obtained from other known methods,
such as HF and full CI, calculated classically, to assess
the performance of DMET-QCC. We choose five points
(R =0.7,1.0,1.1,1.3,and 1.6 A) along the potential en-
ergy curve for comparison. The total energies per atom
of the Hyp molecule are listed in Table[l All DMET-QCC
results nearly coincide with the full CI results.

We next describe the simulation of our DMET method
on a trapped-ion quantum computer. Instead of varia-
tionally optimizing the energies, then running through
the DMET cycles, here we focus on the evaluation of the
total energy from the quantum simulation for the clas-
sically pre-computed optimal parameters. Note that for
the DMET cycles, we require (X X), (YY), (ZZ), (X Z),
(ZX), (Zv), (Z1), (X0), and (X1) to be simulated, where
the subscripts denote the qubit index. See Appendix
for details on the Hamiltonian and the DMET energy
expressions used in the experiments.

We implement the quantum simulation circuits on
TonQ’s 11-qubit trapped-ion quantum computer, which is
described in detail elsewhere [38]. In the quantum com-
puter, 15 '"'Yb™ ions, aligned to form a linear crystal
with spacing of about 5 pm, are suspended in a chip trap
with a radial pseudopotential frequency of ~3.1 MHz.
We cool the crystal to its motional ground state and use
the 11 ions in the middle as qubits. Counter-propagating
laser beams capable of illuminating individual ions are
used to implement quantum gates, leveraging the ion—
ion coupling mediated by the collective radial motional
modes. We read out the quantum state by fluorescing
the ions using a detection laser.

The native gates available in the quantum com-
puter are Ry(m/2) = exp(—iogm/4) and ¢¢'(w/2) :=
exp(—iogoym/4), where o4 = cos(¢)X + sin(¢)Y. We
thus compile the DMET-QCC ansatz circuits discussed
earlier using the native gates and optimize the circuits to
reduce the number of quantum gates. Fig. C) shows
the pre- and post-optimizing compilation quantum cir-
cuits. See Appendix [H] for further details.

We extract the expectation values of the Pauli terms
using the three compiled, optimized circuits shown in
Fig.[I{C)(2)(a). We use the XX and ZZ circuits for (X X
and the XZ circuit for (XZ) and (ZX), as the two pre-
optimization circuits for (XZ) and (ZX) reduce to the
same circuit upon optimizing compilation. The single-
qubit Pauli terms (Xy), (X1), (Zo), and (Z1), where B;
denotes the i-th qubit’s expectation value in the B ba-

sis, are computed using all of the statistics available from
the three circuit executions. For instance, for (Xg), we
use the results from both (XX) and (XZ). Likewise
approaches are used for (X1), (Zy), and (Z1).

The total energies obtained from the quantum com-
puter (blue plotted points), along with the classically
computed potential energies (lines), using the reference
R values are shown in Fig. |2 The experimentally deter-
mined energies nearly coincide with the full CI energies
(black line). The full CI values lie within the error bars
for every point. With the exception of R = 1.1 A, the
experimental energy values are in agreement with the
ideal DMET-QCC results to within chemical accuracy
(1.5936 x 10~3 hartrees). See Table [I| for the precise val-
ues of the experimental energies and their error values.
The error bars are evaluated from the empirical boot-
strapping method detailed in Appendix [G] This shows
that the DMET-QCC ansatz, employed in a trapped-
ion quantum computer, is capable of describing bond-
breaking and bond-forming processes in molecular sys-
tems.
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FIG. 2. The potential energy curve of the symmetric expan-
sion of the ring of 10 hydrogen atoms (H1o). The green colour
indicates the region of energy values within chemical accuracy
with respect to the full CI curve.

We now perform classical post-processing, purify-
ing the two-particle, reduced density matrix using
McWeeney’s density purification technique [39] to see
whether we can further improve the total energy eval-
uation. The two-particle, reduced density matrices ob-
tained from the experiment are iteratively purified as
Poew — 3(Pold )2 — 2(Pold )3 until the convergence cri-

pgars pgrs pgrs
terion of Tr(P2,.. — Ppgrs) < 1.0 x 1072 is met. See
Appendix [E] for details. This requires us to run an addi-
tional circuit, Y'Y, on the trapped-ion quantum computer
with three single-qubit and one two-qubit native opera-
tions, as shown in Fig. [I{C)(2)(b). See Appendix [H] for
details on the optimizing compilation. In order to cap-

ture the nature of the entanglement in our simulation,



TABLE I. The calculated total energies per atom (in hartrees), using the HF, full CI, and DMET-QCC methods, for the Hio
molecule along the potential energy curve (R =0.7,1.0,1.1,1.3,and 1.6 A) of the symmetric expansion. For DMET-QCC, we
report the theoretical (T), experimental (E), and post-processed (P) results. For the experimental and the post-processed
results, we report the standard deviation of the energies, calculated using bootstrapping. See Appendix [G] for details. Note
that we intentionally report four digits in the experimentally determined and post-processed energies for the purpose of simple

comparison.
R (A)| HF FCI |DMET-QCC (T)| DMET-QCC (E) | DMET-QCC (P)
0.7 |—0.454468 | —0.462588 —0.460015 —0.4605 = 0.007|—0.4639 =+ 0.008
1.0 |—0.526412|—0.538093 —0.536753 —0.5361 &+ 0.007|—0.5382 &+ 0.007
1.1 |—-0.527728|—0.541007 —0.540160 —0.5385 &+ 0.006|—0.5399 + 0.007
1.3 |—0.518798|—0.536375 —0.536354 —0.5355 &+ 0.006 | —0.5357 &= 0.006
1.6 |—0.494352|—0.522320 —0.522484 —0.5210 &+ 0.005|—0.5220 £ 0.004

which is the characteristic phenomenon of quantum sim-
ulation, we also investigate two types of quantum entan-
glement. The Hilbert space of the two-qubit system is
split into two subsystems: the first and second qubits,
and the fragment and the bath orbitals. In both cases,
the experimental results are very close to theoretical pre-
dictions and clearly show that the states we observe in
the present experiment are entangled. See Appendix [F]
for more details.

Figure [2| shows the post-processed total energies (red
plotted points). The post-processed energies are within
chemical accuracy with the full CI energies for all points
calculated. See Table [[] for the precise values of both
the post-processed energies and their respective errors.
The high quality of the two-qubit gates in the hardware
enables accurate post-processing. See Appendix [E] for
further details. For R = 1.1 A, the post-processed to-
tal energy is £ = —0.539 = 0.007 hartrees, which is
within chemical accuracy. The two-particle, reduced den-
sity matrices with large error values are greatly improved
by the density matrix purification, as also seen in a pre-
vious work [I0]. Note that not all total energies for all
points in our work are improved (R = 0.7,1.0 A) com-
pared to the ideal DMET-QCC results, as the errors in
some of the determined energies prior to post-processing
are very small.

Using the post-processed result where R = 1.1 A, we
achieve chemical accuracy for the total energies with ideal
DMET-QCC results for all points. In addition, the post-
processed energies are within chemical accuracy with re-
spect to the full CI energies for all points. This is realized
by treating electron correlation for a 10-electron system
without using frozen-core approximation (i.e., taking into
account all electrons equally and explicitly) in our simu-
lation on a trapped-ion quantum computer.

In this work, we have described a systematic end-to-
end pipeline developed using a PD technique to reduce
the size of an electronic structure simulation to realize the
simulation on a trapped-ion NISQ device. Our methodol-
ogy involves the following. We combine DMET and VQE
with a QCC ansatz to compress the quantum simulation
circuit for the electronic structure calculation and apply
circuit optimization techniques that target trapped-ion
quantum computers. We further apply density matrix

purification algorithms to mitigate residual errors. We
construct the potential energy curve of the ring of 10
hydrogen atoms as a proof of concept to investigate the
viability of our pipeline. Our results achieve chemical
accuracy with respect to both the ideal simulated results
and the full CI results. Our pipeline allows us to reduce
the number of qubits required for our simulation, hence
enabling us to equally and explicitly consider all electrons
in the computation of electronic correlation. Further, our
results demonstrate that the approach employed herein
can describe bond-breaking and bond-forming in molec-
ular systems. To our knowledge, the current molecular
system is the largest chemistry problem simulated on a
quantum hardware device to obtain the total molecular
energies, including electron correlation.

Computer-aided molecular design in both materials
science and the life sciences is key to our attaining a
sustainable future through the accurate prediction of
chemical reactions, such as the catalytic reaction of
organometallic compounds in advanced materials innova-
tion, enzymatic reactions in the life sciences, and the elec-
trochemical reactions implemented in next-generation
batteries. In a previous work by some authors of the
present paper [26], it is shown that a quantum simu-
lation of a typical, industrially relevant organometallic
compound would require over 2000 qubits. Leveraging
the pipeline presented herein and selecting the appropri-
ate PD technique could result in the reduction of qubit
requirements significantly. A reduction by a factor of
five for industrially relevant systems is shown in another
work [22]. This sort of reduction could place these simu-
lations within the reach of near-future NISQ devices that
have hundreds of qubits. The precise reduction in the
amount of required resources can be both algorithm de-
pendent and application dependent, but our current work
shows a potential for resource reduction by up to a factor
of 10, while preserving the accuracy of simulations. Our
pipeline has the capacity to leverage the capabilities of
quantum hardware, paving the road toward a molecular
design platform enabled by a quantum computer.
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A. THE SYSTEM HAMILTONIAN

The second-quantized electronic Hamiltonian can be
written as

N . 1 e
H:thqa;;aq"'i Z (pQ|7"5) ;f,a;f, rQq
Pya

p,q,7T,8

(A1)

where p, g, r, and s are distributed over all spin-orbitals,
and a; and a4 are the corresponding creation and anni-
hilation operators. The terms h,, and (pq\rs) are the
one- and two-electron integrals (in chemists’ notation),
respectively. The evaluation of these integrals, as well
as the Hartree-Fock (HF) and full CI calculations, are
carried out using PySCF [40]. The minimal basis set
MINAO [41] is used in our calculation.

The electronic Hamiltonian is then transformed
into the qubitized form by using symmetry-conserving
Bravyi-Kitaev transformation (scBK) [35, [36]. The
qubitized Hamiltonian can be written as

H= Z hyop + Z hpqagag + Z hpqragaga;f +...,
P Pq

par
(A2)
where p, g, 7,... are distributed over all qubits, and o €

{04,0y,02, I} acts on qubit p. The transformation of the
electronic Hamiltonian into a qubit basis is performed
using OpenFermion [42].

B. THE DENSITY MATRIX
EMBEDDING THEORY

Let us consider a molecular system divided into frag-
ments, in which a small fragment A with N states is
surrounded by a large bath B with Np states. If the
wavefunction of the entire system |¥) is known, Schmidt
decomposition [33] can be applied, and we may write

Na Np

|¥) = ZZ%‘H%H&)
Ne
= ZIO@(Z%’IBJ‘))

J

= > ladla)
= Z¢ii’|%>|Xi’>,

i1’

(B1)

where

IXi) = Z%‘J‘Wﬁ, (B2)

|a;) and |B;) denote particular many-body bases, and
|xi) is the orthogonal set of |x;). The states |x;/) are the

states of bath B; however, the number of states coincides
with that of fragment A. This shows that, regardless of
the size of bath B, only Na states can be entangled with
the fragment. This will reduce the size of the problem
drastically for large-sized systems.

The exact wavefunction of the entire system |¥) is the
eigenfunction of the Hamiltonian for the entire system H.
The Hamiltonian H’ of fragment A embedded in bath B
can be defined using a projection operator P, that is,

H = PHP, (B3)
where

P = Jai)xir) (il {xl- (B4)

i’

It is now evident that the electronic structure of the
entire system can be described exactly by that of the frag-
ments and their surrounding baths. The electronic struc-
ture calculation of the entire system can be solved using
this smaller problem. However, the exact wavefunction
of the molecular system is usually not known a priori;
thus, introduction of an approximation is necessary. The
wavefunction of the entire system obtained by low-level,
mean-field theory, such as the HF calculation, would be a
straightforward approximation of the exact wavefunction
of the entire system. Using a low-level wavefunction to
construct a bath and solve the reduced problem employ-
ing a high-level theory is the principal idea behind the
density matrix embedding theory (DMET).

The orbitals of the entire system are transformed into
unentangled occupied orbitals, unentangled virtual or-
bitals, local fragment orbitals, and bath orbitals. The
orbital space of the entire system is then greatly reduced,
as only the local fragment and bath orbitals are employed
for each high-level DMET fragment calculation.

Practically, we need to optimize the embedding of a
bath. In DMET, a high-level calculation for each frag-
ment is carried out individually until self-consistency has
been attained according to a certain criterion: the sum of
the one-particle reduced density matrix (1-RDM) of all
of the fragments agrees with that of the low-level one for
the entire system. The DMET energy is calculated us-
ing the 1-RDM and two-particle reduced density matrix
(2-RDM). The DMET algorithm used in this work, the
single-shot algorithm [29], can be described as follows:

1. Calculate the wavefunction of the entire molecular
system using a low-level method and then localize
the orbitals to fragment the molecule.

2. Construct the bath orbitals so as to include the
surrounding environmental effect.

3. Construct the Hamiltonian of a fragment (including
environmental effect) and calculate the wavefunc-
tion using a method based on a high-level theory.

4. Calculate the fragment energy and the number of



electrons for each fragment with the 1- and 2-RDMs
from the wavefunction obtained in Step 3.

5. Repeat steps 2—4 for each fragment and obtain the
total energy and the high-level 1-RDM of the entire
molecular system.

6. Repeat steps 2-5 until the sum of the number of
electrons in the fragments agrees with the number
of electrons for the entire system.

The initial step of a DMET calculation is to perform
a mean-field HF calculation for the entire molecule. The
localized orbitals are obtained by localizing the canonical
orbitals from the HF calculation to determine how to
fragment the molecules. The Meta-Lowdin localization
scheme [43] is used in this work.

After the molecule is divided, the DMET cycle (steps
2-6) is initiated. The first step in the cycle is to obtain
the bath orbitals a/ (the active orbitals in the electronic
structure calculation used for fragments to describe envi-
ronmental effects), and the environment density matrix
D4 s calculated as follows,

Z CPT era

reenv

Denv A (B5)

where C' represents the molecular orbital coefficients
obtained from the mean-field calculation of the entire
molecule. Now, the embedding Hamiltonian H®™"4 can
be constructed (step 3). It can be defined as

La+Lp L
Femb.A _ Z [hpq + Z[(pq|1"5) - (pS|TC])]Df2V}&;&q
pq s

—5ﬂza ap+z pq|rsd&& Qg

pEA pqrs
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where the h,, are the one-electron integrals, the (pq|rs)
are the two-electron integrals in chemists’ notation, L 4 is
the number of orbitals in the fragment, Lp is the number
of bath orbitals, L is the number of orbitals in the entire
molecule, and p, q, r, and s are general orbital indices.
We introduce the chemical potential du, which is opti-
mized in the DMET cycle. Once the Hamiltonian Hemb-4
has been obtained, the electronic structure calculation is
performed for fragment A. We employ VQE with the
QCC ansatz in this work. Following these calculations,
the algorithm constructs the one- and two-particle den-
sity matrices, D4 and Py, respectively, from the QCC
wavefunction ¥4, The fragment energy E4 is calculated

(step 4) from the reduced density matrices as

oy (5

q

(h,,q . > rl(palrs) —2 (pSITq)}Di‘s”) pA - (B7)
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Note that only the elements with fragment orbital indices
(p € A) are used for calculating the fragment energy.
Here, the 1- and 2-RDMs are defined as

Dy = (@}q)

aj, (B8)

and

Ppyor = (ahalasa,), (B9)

respectively. The number of electrons N4 in fragment A
are calculated (step 4) as

= ZD;‘p

peEA

(B10)

The DMET energy is calculated by summing the frag-
ment energy for each fragment (step 5), which is obtained
according to the equation

EDMET

ZEA + Enuc (Bll)

where E™° is the nuclear repulsion energy. The DMET
cycle (steps 2-6) iterates until the number of electrons in
the DMET calculation given by

NG
A
converges to the total number of electrons in the molecule

NTotal - Convergence is achieved by updating the chemi-
cal potential du according to the equation

NFragment (B12)

NFragment

51 = af — Vot (B13)

where a is positive number.

For the DMET calculation for the Hig ring, the high
symmetry of the molecular structure allows us to reduce
the calculation further. We calculate only a single frag-
ment with the assumption that all of the fragments have
both the same energy and number of electrons. The
DMET total energy with only one fragment multiplied
by 10 (the number of hydrogen atoms) coincides with
the energy using all fragments; thus, we treated only one
fragment in the DMET calculation and simply multiplied
the energy and the number of electrons by 10.



C. THE QUBIT COUPLED-CLUSTER
METHOD

An accurate and affordable description of the corre-
lated wave function |¥) required to evaluate the energy
of fragment A according to Eq. is achieved using
the qubit coupled-cluster (QCC) method [34]. Within
the QCC approach, a mean-field wave function [€2) is
determined and subsequently utilized in a heuristic [37]
to construct a unitary operator ansatz U (7). This op-
erator recovers the missing electron correlation for the
mean-field state |©2) and results in the QCC wave func-
tion according to the equation

(¥ (7,Q)) =U(7)[Q). (C1)
A parameterized mean-field wave function is defined as
a direct product of n, single-qubit states and can be ex-
pressed as

20) = @) 0.0 (©)

where I = {6, };‘li1 U{e; };ﬁl is the set of 2n, mean-field
parameters. Each single-qubit state is then represented
in the qubit computational basis as

o 63.0) = cos () 105) + 0% sin () 1), (3

and is characterized by the Bloch sphere polar and az-
imuthal angles 6; and ¢;, respectively [34]. The mean-
field energy functional is given by

Enr (T) = (2(T) |H|2(T)). (C4)

Minimization of Eq. (C4) with respect to T' gives the
ground-state, mean-field energy FEyp and the corre-
sponding optimal set of parameters I'ope. The QCC uni-

tary operator ansatz U (1) takes the form
~ - iTkPk
U(r)= -
(7) Ikl exp ( 5 ) 7

where Py is a multi-qubit Pauli operator defined as

(C5)

P, =Qpy"” for p" € {X,Y, 2,1},  (C6)

J

T is a variational parameter, and n, is the number of

Pauli operators P, included in the ansatz. The QCC
energy functional is defined as
Eqce (7,T) = ((T)|UT () HU (1) |2(T)),  (C7)

where 7 = {7;},2, is the set of m, variational pa-
rameters. The heuristic screening procedure [37] is
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utilized to construct the set of operators {Py},2, ap-
pearing in Eq. (C5). This heuristic approach [34] re-
lies on the gradient of Eq. (C7) with respect to 7
evaluated using the optimal mean-field wave function
(i.e., I' = Topt and 7 = 0), the form of which is

OEQCC
8Tk

— £<Q (Fopt) ‘[Pk, HHQ (I‘opt»’

: (Cs)

7=0

where [Pk7ff] = P.H — HP,. Equation is quanti-
fied for a representative Py, from each group of electron
correlation generators contained in the direct interaction
set (DIS) [37]. The n, representative generators from the
DIS with the largest energy gradient magnitudes are uti-
lized in Eq. (C5). Minimization of the energy functional
given by Eq. (C7)) with respect to the 2n,+n, parameter
set T = I' U T gives the ground state energy Eqcc and
the QCC correlated wave function |¥ (T opt))-

The DMET-QCC framework is applied to compute
the energy of each point along the Hig potential energy
curve (see Table [I| and Fig. . The pre-optimized quan-
tum circuits utilized for the trapped ion hardware exper-
iments are constructed with T ops = I'opt U Topy Obtained
from classical DMET-QCC simulations of the embedding
Hamiltonian for fragment A (see Eq. ) At each point
R along the potential energy curve, H°*™>4 (R) is a two-
qubit operator (n, = 2) after scBK encoding and takes
the form

He™™ 4 (R) = a(R) 4+ b (R) Xo X, + ¢ (R) ZoZ,
+ [ (R) [XoZ1 + Zo X4].

(C9)

The inter-atom, spacing-dependent expansion coefficients
of H*™>4 (R) in Eq. are provided in Table for the
different R values considered in this manuscript. Mini-
mization of the mean-field and QCC energy functionals
given by Egs. and is performed utilizing the
L-BFGS-B solver [44] [45] as implemented in the SciPy li-
brary [46] with convergence criteria ftol = 1078 a.u. and
gtol = 10~% a.u. For the embedding Hamiltonians speci-
fied by Eq. and Table[[T] the DIS is characterized by
a single flip index [37] F' = {0, 1} that gives rise to a set
of two electron correlation generators { XY, Yo X1} with
equivalent energy gradient magnitudes. For each DMET-
QCC ansatz circuit considered in the present work, a
single electron correlation generator is selected (ng = 1)
and utilized in Eq. : ]50 = XoY;. Figure |3 shows
a generic pre-optimized DMET-QCC ansatz circuit and
illustrates its explicit dependence on the parameter set
T = {00,601, 00, P1,70}. Table provides the optimal
set of parameters T opy obtained from classical DMET-
QCC simulations along with the energy gradient magni-
tudes for Py = XyY7 and the converged QCC energies for
each point on the Hig potential energy curve.

ProjectQ [47] is employed to perform simulation on
classical hardware. Details for further optimization of



R(A)] a(R) b(R) ¢(R) d(R) e(R) f(R)
0.7 |-0.68193454(0.10588444[0.01335343| 0.00073715 |0.71060493] 0.00073715
1.0 |-0.96152855| 0.1060809 [0.00874323| 0.00032726 |0.36286997 | 0.00032726
1.1 |-0.98784117(0.10701976 |0.00771182|-0.00040826 | 0.30166145 |-0.00040826
1.3 | -1.0037686 [0.10981794 |0.00603216|-0.00075683(0.21615008 |-0.00075683
1.6 |-0.98711077]0.11566604 |0.00410816|-0.00132070 |0.13852500|-0.00132070
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TABLE II. Position-dependent expansion coefficients (in a.u.) of the scBK-encoded embedding Hamiltonians (see Eq. at

each point along the Hip potential energy curve considered in the present work.

lwo = 0) #Rz (¢0)HRy (6o)

w1 = 0) {R. (91) [ Ry (61) ]

FIG. 3. Generic DMET-QCC ansatz circuit with explicit dependence on the mean-field and QCC parameters. Both single-qubit

states are initialized as |0).

the DMET-QCC ansatz circuits are described in Ap-
pendix [H]

D. HAMILTONIAN AND DMET
TOTAL ENERGY EXPRESSION
EMPLOYED IN THE
EXPERIMENT

The pre-optimized circuit used for the experiment is
obtained from the final iteration of DMET-QCC classi-
cal simulation. The VQE in conjunction with the QCC
ansatz (VQE-QCC) is employed to minimize the energy
of the subsystem in DMET. The Hamiltonians (see also
Eq. (B6))) used to minimize the energy in the VQE-
QCC calculation for the final iteration of DMET in the
qubitized form are as follows:

Hp_y -4 = 0.000737X, + 0.000737X,
+0.710605Zy + 0.710605Z;
+0.105884X X + 0.0133532Z
+0.000737X Z 4 0.000737Z X
— 0.681934

(D1)

Hyoy o4 = —0.000327X, — 0.000327X,
+0.362870Z, + 0.3628707,
+0.106081X X + 0.0087432 7
—0.000327X Z — 0.000327Z X
—0.961529

Hyo_y 14 = —0.000408X, — 0.000408 X,
+0.3016617Z + 0.3016617,
+0.107019X X + 0.007712ZZ
— 0.000408X Z — 0.000408Z X
— 0.987841

Hp_y 54 = —0.000757X, — 0.000757 X,
+0.216150Z, + 0.2161502,
+0.109818X X + 0.0060322Z
—0.000757X Z — 0.000757Z X
—1.003769

(D4)

Hpy oa = +0.001321 X, + 0.001321X,
+0.138525Z + 0.1385252;
+0.115666 X X + 0.004108ZZ
+0.001321X Z + 0.001321ZX
—0.987111

(D5)

The above Hamiltonians are for the points R =
0.7,1.0,1.1,1.3, and 1.6 A, respectively. These Hamilto-
nians are used to obtain the pre-optimized circuit, as
described in Appendix [C] Note that the Hamiltonians
shown above are not exactly the same as the Hamilto-
nian shown in Eq. (B6). The orbitals are transformed
into molecular orbitals using the coefficients C' optimized
in Hartree—Fock calculations of the subsystems.

The DMET energy expression is not the same as that
of the Hamiltonians shown above. The total energy of
the DMET calculation, shown in Eq. , is calculated
from the one- and two-particle reduced density matrices
constructed from the wavefunction. The total energy per
atom for the five points in the final DMET iteration can
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R(A)| Topt = {0001, b0, 1,70} (rad.) ‘ngocc (a.w.) | Eqcc (au.)
0.7 |{m, 7, 0.592304, 1.640891,0.074366} | 0.10588444 |-2.09372986
1.0 |{m, 7, 0.329549,4.539729,0.145142}| 0.10608090 |-1.68623718
1.1 |{m, 7, 0.817858,3.577479,0.175558}| 0.10701976 |-1.59287055
1.3 |{m, 7, 0.254493,0.538052,0.248780}| 0.10981794 |-1.44376730
1.6 |{m, 7, 5.299136,2.954616,0.395513}| 0.11566604 |-1.28322914

TABLE III. Optimal set of parameters T opt, the energy gradient magnitudes for Py = XoYs (see Eq. , and the converged
QCC energy (see Eq. obtained from classical DMET-QCC simulations for each point along the Hio potential energy curve.

be expressed in an analytical form as follows:

Ep_g-i = —0.741205(X,) — 0.741205(X; )
+0.341625(Z0) + 0.341625(Z;)
+0.100074(X X) + 0.006677(Z Z)
+0.007105(X Z) + 0.007105(Z X)
+0.222105

(D6)

Ep_y o = —0.673414(X,) — 0.673414(X; )
+0.175104(Z0) + 0.175104(Z, )
+0.096960(X X) + 0.004372(Z Z)
+0.003980(X Z) + 0.003980(Z X))
—0.180575

Ep_y 14 = 0.646062(X,) + 0.646062(X )
+0.145522(Z,) + 0.145522(Z;)
+0.096791(X X) + 0.003856(Z Z)
—0.003541(X Z) — 0.003541(ZX)
— 0.240541

(D8)

Ep_y 53 = 0.593934(Xo) 4 0.593934(X;)
+0.104150(Zo) + 0.104150(Z; )
+0.097347(X X) + 0.003016(Z Z)
— 0.003098(X Z) — 0.003098(ZX)
—0.313513

Ep_y g = 0.526447(X,) 4 0.526447(X; )
+0.066646(Z,) + 0.066646(Z; )
+0.099727(X X) + 0.002054(Z Z)
—0.002874(X Z) — 0.002874(ZX )
—0.363113

(D10)

The DMET energy expressions are for the points R =
0.7,1.0,1.1,1.3, and 1.6 A, respectively. The total energy
per atom can be calculated using these expressions. Note
that when density matrix purification is carried out, the
two-particle reduced density matrix is constructed and
purified; thus, these equations cannot be used to compute

the total energies. The total energies are evaluated using
Eq. with the purified reduced density matrices.

Note that the expectation value (YY) is not needed
to compute the total energies. When we compute the
DMET-QCC energy, we first measure the Pauli opera-
tors XX, YY, ZZ, XZ, and ZX in the experiment. An
additional experiment is needed that measures (YY) for
post-processing.

E. DENSITY MATRIX
PURIFICATION

We perform density matrix purification based on
McWeeny’s purification scheme [39]. This iterative
method purifies the two-particle reduced density matrix
Pp4rs according to

1d |2 1d |3
Poors = 3(Ppors)” — 2(Ppyrs)”- (E1)

qrs qrs qrs

The iteration is continued until the convergence criterion

Tr(P2ys — Pogrs) < € (E2)
is met. In this work, e = 1.0x 1072 is used. Note that the
change in the total energy is smaller than a millihartree
when we changed the criterion to 1.0 x 10~7. The tensor
multiplication of P is defined as

qurs = Dpquv * Cuursa (ES)
where the Einstein summation is implied.

Note that this purification technique can only be ap-
plied to two-electron systems [10] [13]. Although we here
consider a 10-electron system, the reduced density ma-
trix in our current work can be purified, as the fragment
calculation for DMET involves a two-electron system.

In our preliminary investigation, two-particle reduced
density matrices with large errors are largely improved by
the density matrix purification. However, total energies
of all points in this work are not improved, as the errors
in them are very small. To understand the performance
of the density matrix purification method in this regime,
we study the dependency of the purified energies on the
accuracy of the individual expectation values. In particu-
lar, we explore (X Z), (ZX), (Xo), and (X1), whose ideal
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FIG. 4. Density matrix purification analysis: The colour bar indicates the absolute energy error in millihartees (mHa) with
respect to the Epmer after purification, and the yellow—green—blue colour scale indicates chemical accuracy (< 1.5936 mHa).
The vertical axis represents the expectation values for (XZ) + (ZX), the horizontal axis represents the expectation values of
(Xo) + (X1), and the blue dot show the experimental data. Within the dashed red lines is the region where the method will
improve the experimentally determined results. Panel (a) corresponds to the successfully post-processed result at R = 1.1 A,
and panel (b) is an example case at R = 1.0 A, where the purification did not yield an improvement over the experimental

result.

simulated values are extremely small. We find that the
finite values measured via experiment have a significant
effect on both the resulting energy and the success of the
density matrix purification.

Figure [f shows a simulated analysis of the purified en-
ergy estimates and their dependence on (XZ) + (ZX)
and (Xo) + (X1). In the ideal case, each term along the
axes is equal, and contributes equally to the total en-
ergy. The experimental values are indicated by the blue
dot, and the colour bar represents the error value in the
purified energy, with chemical accuracy indicated by the
yellow—green—blue region. The area within the dashed
red lines shows the region where the purification is effec-
tive in improving the experimental results. Here we show
two cases. In Fig. a)7 for the specific case of R = 1.1A,
the purification improves the experimental results (the
blue dot is within the dashed red lines), achieving chem-
ical accuracy. Figure |7_l|(b) is an example at the point
R = 1.010%7 where the purification process does not im-
prove the energy estimate, and the resulting difference
is within the error range of the experimental data. The
rest of the experimental points follow this trend. The
range where the purification will improve the experimen-
tal result (the width between the dashed red lines) varies
between (a) and (b), as it is dependent on the accuracy of
the rest of the expectation values. This is corroborated
by the series of experiments described in this manuscript,
where the experimental values which are already within
chemical accuracy do not improve after density matrix
purification.

We investigate how the accuracy of (YY), for which a
two-qubit circuit is used, affects both the experimental
energy and the post-processed energy by manually chang-
ing the (YY) expectation value while keeping the other
expectation values fixed. We use the point R = 1.1 A,
which allows us to succeed in improving the total en-
ergy value by employing density matrix purification. The
analysis of the energy dependence on (YY) is depicted in
Fig. The values without purification (experimentally

determined) are indicated in blue, the ideal values are
shown using a black line, and the post-processed (puri-
fied) energy values are shown plotted in red. The region
of energy values within chemical accuracy is shown us-
ing a shaded region. The experimental values that are
not purified do not depend on (YY). However, we ob-
serve that the value of (YY) affects how the energy is
post-processed: the post-processed energy falls out of the
chemical accuracy range when (YY) is smaller than 0.07
or larger than 0.23. The present analysis shows that den-
sity matrix purification with a large error in (YY) expec-
tation value will not succeed. In this work, however, the
trapped-ion hardware provides us with the (YY) expec-
tation value of 0.176, which is accurate enough to bring
the post-processed total energy within chemical accuracy.

F. ENTANGLEMENT ENTROPY

In this section, we describe the computation of two
types of entanglement entropies. The first is the entan-
glement between different molecular orbitals (MO) and
the second is the entanglement between fragment and
bath. The embedding Hamiltonian given by Eq.
is obtained by projecting the total system onto a frag-
ment described by using the basis of fragment and bath
orbitals. From this expression, the orbitals are trans-
formed into the MO basis by using the MO coefficients
C optimized in the HF calculation of the subsystem.
The Hamiltonians used in the experiment are in this
MO basis. Therefore, the entanglement between differ-
ent MOs corresponds to the entanglement between dif-
ferent qubits. One of the motivations for looking at this
quantity is to check whether the ground state of the frag-
ment Hamiltonian is an entangled state, despite the fact
that the optimized circuits (see Fig. [I(C)) for evaluat-
ing the embedding Hamiltonian contain only single-qubit
gates. The other type of entanglement entropy, between
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FIG. 5. Dependence of the (YY) expectation value on the density matrix purification. The black line, blue plot, red plot, and
the shaded region indicate the ideal total energy values, the total energies without density matrix purification (experimentally
determined), the total energies after purification (post-processed), and the region of energy values within chemical accuracy,

respectively.

the fragment and the bath, will capture the structure of
the Schmidt decomposition given by Eq. (B1)) and, there-
fore, the properties of DMET more directly.

We consider the entanglement entropies in the fermion
picture. The elements of the density matrices we obtain
via experimentation are (afalasaq) and (afag), where
the indices p, g, 7, and s take values in the spin-orbitals
{la,18,2a,28}. In order to split the Hilbert space based
on orbitals, we describe the density matrix p in the basis
of [1a,18,2a,28)(1a/,1/’,2a/,2’|. The RDM in our
analysis is obtained by taking the trace over the degrees
of freedom for orbital 2:

pRPM =3 (20, 28|0) (]2, 28).

2,28

(F1)

It is straightforward to express the RDM in terms of
fermionic operators:

pROM = ding |(a1aal,0150] ), (araalaal jass).

(alqa1aaral ), <a1{aa10¢a’11-6a15>} : (F2)
Note that off-diagonal elements in Eq. are zero due
to the conservation of spins and electron numbers. These
symmetries are guaranteed once the scBK transforma-
tion has been performed. Therefore, experimental noise
will not change the structure of the RDM. Note that
while there is a systematic way to expand the two- qubit

RDM into the 4-qubit RDM in the sense that there is no
additional experimental information required, the values
of the entanglement entropies between these two expres-
sions are different.

The entanglement entropy is defined by the equation

S=- sz‘ log p; , (F3)

where p; are the eigenvalues of the RDM.

First, we choose a basis such that 1la and 13 corre-
spond to the first qubit and 2« and 23 correspond to the
second qubit, both after scBK transformation. The re-
sults show that the entanglement entropies between the
first qubit and the second qubit increase as the bond
lengths increase.

R=07AR=11AR=164A
Experiment| 0.03682 | 0.07628 | 0.25543
Theory 0.01510 | 0.06500 | 0.23556

TABLE IV. Entanglement entropy between qubits (molecular
orbitals). The logarithm base is 2.

We perform a transformation such that la and 173
represent spin-up and spin-down states of the fragment



orbitals, respectively, while 2a and 28 represent those
of the bath orbitals. To compute the entropies in the
fragment—bath basis, we transform the basis into the ten-
sor product of the fragment and the bath Hilbert spaces.
In this case, the entanglement entropies decrease as the
bond lengths increase. The experimental results are very
close to the theoretical predictions for both cases.

R=07AR=11AlR=16A
1.99571 | 1.97718 | 1.88850
1.99602 | 1.97788 | 1.89011

Experiment
Theory

TABLE V. Entanglement entropy between fragment and
bath. The logarithm base is 2.

In the MO basis picture, the ground state in the ab-
sence of interactions is a product state (i.e., an HF state).
Therefore, the entanglement entropies should be zero.
Two-body interactions generate entanglement between
different orbitals. Intuitively speaking, the Hilbert space
is divided based on the energy levels (i.e., the Slater de-
terminants) in this picture. The fact that the entangle-
ment entropies in the MO picture are small reflects the
fact that the ground states are close to the HF states.

On the other hand, in the fragment—bath orbital pic-
ture, the the Hilbert space is split depending on the
orbitals’ position in real space. Therefore, the ground
state in the fragment—bath basis is highly entangled even
when there is no interaction. More explicitly, the MO
coefficients C' (the transformation matrix between the
fragment-bath basis and the MO basis) for R = 0.7 A is

o= 0.70710679 0.70710677\ _ 1 (1 1 (F4)
~ \—0.70710677 0.70710679) ~ /2 \ -1 1

The last term in Eq. (F4]) represents the discrete Fourier
transformation. The entanglement entropy is close to the
maximal value, which is log4 = 2.

G. THE BOOTSTRAP METHOD

The total energies and their statistical errors are cal-
culated using an empirical bootstrapping method. We
follow the procedure described in a previous work [9].
We start from the state preparation and measurement
(SPAM)-corrected histograms for each Pauli operator
(XX, YY, ZZ, XZ, and ZX), and construct a distribution
of total energies. The mean and the standard deviation
(o) are computed from the distribution of energies. The
procedure of the bootstrapping method is as follows.

1. Draw a random bootstrap sample of the same size
as the original dataset with replacement of the
data.

2. Construct a new histogram based on step 1.
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3. Compute the expectation value of the Pauli terms
using the new histogram.

4. Repeat steps 1-3 for each Pauli term and obtain
all expectation values needed to construct reduced
density matrices.

5. Construct one- and two-particle reduced density
matrices.

6. Calculate the total energy.

7. Repeat steps 1-6 500 times and obtain a distribu-
tion of total energies.

8. Calculate the mean and the standard deviation
from the distribution of energies constructed in
step 7.

We follow this procedure to construct a histogram
of possible measurements consistent with the empirical
data. The calculated value of ¢ is represented using er-
ror bars. The mean of this distribution is the measured
energy, and the 1o error estimate is the its standard de-
viation. The difference from the previous work [9] is the
construction of the reduced density matrices (step 5),
which is required for DMET energy calculation. Note
that when we perform density matrix purification, we
purify the two-particle reduced density matrix between
steps 5 and 6.

H. CIRCUIT OPTIMIZATION

Our DMET-QCC ansatz circuits for Hyo are writ-
ten as a standard gate set that consists of controlled-
NOT, R,(0) := exp(—io,0/2), R, = exp(—io,0/2),
and R, := exp(—io.0/2) gates. To implement these
circuits on a trapped-ion quantum computer, we tran-
spile them so that the output circuits are encoded in
the trapped-ion gate set. This set consists of ¢¢’ :=
exp(—iogopm/4) and ¢ = exp(—ioym/4) gates, where
oy = cos(¢)o, + sin(¢)o,. Further, we keep only three
decimal digits after the decimal point in all our gate pa-
rameter specifications, commensurate with the machine’s
level of precision.

We combine the circuit compilation and optimization
techniques reported elsewhere [9] 48, [49] with the cir-
cuit optimization technique for the trapped-ion gate set
shown in Fig. [] to obtain the final, optimized circuits,
amenable to implementation on a trapped-ion quantum
computer. The pre- and post-optimization circuits are
represented in Fig. ). Their gate parameters appear
in Tables [Vl and [VII]

Specifically, to perform the classical post-processing
step, we use an expectation value of Y'Y obtained
from the trapped-ion quantum computer. The pre-
optimization circuit is the same as that used to cal-
culate any other expectation value, except the mea-
surement basis transformation operations My and M;
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in Fig. C)(2)(a) are sTH. The post-optimization cir-  for efficient and high-fidelity simulations [9,50]. The gate
cuit is shown in Fig. [[{C)(2)(b). Note that we use a  parameter values of § for each point along the potential
real degree of freedom in the two-qubit gate, that is, energy curve are shown in Table [VITI]

o' (0) := exp(—ioyo40/2), as has been used elsewhere
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FIG. 6. Circuit optimization rules used to optimize our DMET-QCC ansatz circuits.
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TABLE VI. Parameter specification of the gates that appear in the pre-optimization circuits in Fig. C)(l). All parameters

are in radians.

R (A) Rgo,o) R(yo,l) Rg,o) RI51,1) R;1,2) R‘(21,3) R5@1,4)
0.7 10.437|3.142|0.395|3.142 | 1.571 | 0.074 |10.996
1.0 |4.618(3.142[3.617|3.142|1.571]0.145 [10.996
1.1 |5.383(3.142[0.097 | 3.142|1.5710.176 | 10.996
1.3 |3.577(3.142|0.103 | 3.142 [ 1.571 | 0.249 | 10.996
1.6 |3.714(3.142[1.481|3.142|1.571]0.395 | 10.996

TABLE VII. Parameter specification of the gates that appear in the post-optimization circuits of (ZZ), (XZ), and (X X) in
Fig. [[[C)(2)(a). All parameters are in radians.

R (A)] ¢72 | 6% | o7 | &7° | o1 | &F° | o1 | o

0.7
1.0
1.1
1.3
1.6

1.175|1.100(1.137|1.175|1.100(1.137|4.166 | 2.670
4.235(4.090|3.236|4.235|4.090 | 3.236|0.804 | 5.661
1.477|1.301{2.469|1.477|1.301|4.712|4.266 | 2.871
1.470(1.219(4.279]1.470|1.219(2.708|4.109|2.790
0.088]5.975|4.1410.088|5.975|2.570|2.438|1.263

TABLE VIII. Parameter specification of the gates that appear in the post-optimization circuits of (YY) in Fig.[T(C)(2)(b). All

parameters are in radians.

R (A)
0.7
1.0
1.1
1.3
1.6

0
0.075
0.145
0.175
0.249
0.396
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