
Smooth Structured Prediction Using Quantum and Classical Gibbs Samplers

Behrooz Sepehry,1 Ehsan Iranmanesh,1 Michael P. Friedlander,1, 2 and Pooya Ronagh1, 3, 4, B

11QB Information Technologies (1QBit), Vancouver, BC
2University of British Columbia, Vancouver, BC

3Institute for Quantum Computing, Waterloo, ON
4University of Waterloo, Waterloo, ON

(Dated: March 1, 2019)

We introduce two quantum algorithms for solving structured prediction problems. We
show that a stochastic subgradient descent method that uses the quantum minimum finding
algorithm and takes its probabilistic failure into account solves the structured prediction
problem with a runtime that scales with the square root of the size of the label space, and
in Õ (1/ε) with respect to the precision, ε, of the solution. Motivated by robust inference
techniques in machine learning, we introduce another quantum algorithm that solves a smooth
approximation of the structured prediction problem with a similar quantum speedup in the
size of the label space and a similar scaling in the precision parameter. In doing so, we analyze
a stochastic gradient algorithm for convex optimization in the presence of an additive error
in the calculation of the gradients, and show that its convergence rate does not deteriorate if
the additive errors are of the order O(

√
ε). This algorithm uses quantum Gibbs sampling

at temperature Ω(ε) as a subroutine. Based on these theoretical observations, we propose
a method for using quantum Gibbs samplers to combine feedforward neural networks with
probabilistic graphical models for quantum machine learning. Our numerical results using
Monte Carlo simulations on an image tagging task demonstrate the benefit of the approach.

CONTENTS

I. Introduction 2

II. Background 5
A. SVMs and SSVMs 5
B. Structured Prediction 7

III. Smooth approximation 9
A. A Min-Max Optimization Problem 9
B. Quantum Gibbs Sampling 10

IV. Computational complexity 12
A. A-SAGA: Approximate SAGA 14
B. Using A-SAGA to Optimize the Nonsmooth Objective Function 19
C. Comparison of SAGA and A-SAGA 22
D. Q-SAGA: A Quantum Algorithm for Optimizing the Smooth Approximation 23
E. A-SubSGDP: Approximate SGD with Polynomial-Decay Averaging 25
F. Q-SubSGDP: A Quantum Algorithm for Optimizing the Nonsmooth Objective

Function 31

B Corresponding author: pooya.ronagh@1qbit.com

ar
X

iv
:1

80
9.

04
09

1v
4

 [
cs

.L
G

]
 2

8
Fe

b
20

19

mailto: pooya.ronagh@1qbit.com

2

V. Numerical experiments 32

VI. Objective functions for structured prediction 34

A. S3VM 34

B. Conditional Log-Likelihood 35

C. Loss-Targeted Conditional Log-Likelihood 36

D. The Jensen Risk Bound 37

VII. Image tagging as a structured-prediction task 38

A. Numerical Results 39

VIII. Conclusion 42

IX. Acknowledgement 43

References 43

A. Convergence of SAGA with Additive Error 48

I. INTRODUCTION

Classification is a central task in machine learning, where the aim is to assign categories to
observations. This is an inherently combinatorial task that often gives rise to piecewise smooth
models, such as support vector machines (SVM). This combinatorial aspect is especially egregious
in structured prediction, where the task involves the prediction of vectors, rather than simply scalar
value assignments. For example, in structured SVMs (SSVM), the number of pieces in the piecewise
smooth model is often exponentially large in the dimension of prediction vectors. A common
technique to deal with nonsmooth models is to optimize smooth approximations, for example using
softmax operators. Although these techniques are effective at hiding the nonsmooth aspects of
the problem by replacing a piecewise nonsmooth problem with a single smooth approximation,
computing that approximation can be intractable when the number of pieces is large. In this paper,
we consider a smoothing that combines ideas from softmax approximations and quantum Gibbs
sampling in order to obtain a quantum speedup for structured prediction tasks. Furthermore, we
introduce a quantum algorithm that does not use softmax approximation, but solves a nonsmooth
structured prediction model with a similar quantum speedup as in the case of the smooth model
for structured prediction. The quantum speedup is in terms of the size of the label space in the
classification problem. This is an important speedup for machine learning applications since the
techniques for classification with a small number of labels do not translate into performant methods
in tasks with a large number of labels [BK13].

It has been speculated for the past 20 years that quantum computers can be used to generate
samples from Gibbs states [TD00]. Since then, many algorithms for Gibbs sampling based on
a quantum-circuit model have been introduced [PW09, TOV+11, KB16, CS16, AGGW17]. The
most recently proposed Gibbs sampler, due to van Apeldoorn et al. [AGGW17], has a logarithmic
dependence on the error of the simulated distribution. The sampler of Chowdhury and Somma
[CS16] similarly has a logarithmic error dependence, but must assume a query access to the entries of
the square root of the problem Hamiltonian. These quantum-circuit algorithms use phase estimation

3

and amplitude amplification techniques to create a quadratic speedup in Gibbs sampling. In
practice, this would still result in an exponentially long runtime. Separately, the Gibbs sampler
of Temme et al. [TOV+11] has an unknown runtime, but has the potential to provide efficient
heuristics since it relies on a quantum Metropolis algorithm.

On the other hand, other quantum and semi-classical evolutions can be used as physical realiza-
tions of improved Gibbs samplers. For example, contemporary investigation in quantum adiabatic the-
ory focuses on adiabaticity in open quantum systems [SL05, AFGG12, ABLZ12, BDRF16, VALZ16].
These authors prove adiabatic theorems to various degrees of generality and assumptions. These adia-
batic theorems suggest the possibility of using controlled adiabatic evolutions of quantum many-body
systems as samplers of the instantaneous steady states of quantum systems. Takeda et al. [TTY+17]
show that a network of non-degenerate optic parametric pulses can produce good estimations of
Boltzmann distributions. Another possible approach to improved Gibbs samplers is to design
customized Gibbs sampling algorithms that rely on Monte Carlo and quantum Monte Carlo methods
implemented on digital high-performance computing hardware [MTT+17, OHY17].

The idea of using Gibbs sampling as a subroutine in machine learning tasks has already been
considered. Wiebe et al. [WKS14] use Gibbs state preparation to propose an improved framework for
quantum deep learning. Crawford et al. [CLG+16] and Levit et al. [LCG+17] introduce a framework
for reinforcement learning that uses Gibbs states as function approximators in Q-learning. Quantum
Gibbs sampling has recently been shown to provide a quadratic speedup in solving linear programs
(LP) and semi-definite programs (SDP) [BS17, BKL+17, AGGW17]. The speedup in these quantum
algorithms with respect to the problem size often comes at the expense of much worse scaling in
terms of solution precision. For example, van Apeldoorn et al. [AGGW17] propose a quantum
algorithm for LP that requires Õ(ε−5) queries to the input of the LP, and an algorithm for SDPs
that requires Õ(ε−8) queries to the input matrices of the SDP, where ε is an additive error on the
accuracy of the final solution. Van Apeldoorn and Gilyén [AG18] later improved the scaling of
their result by further analysis and reduced the dependence on precision parameters to Õ(ε−4).
Several lower bounds proved in [AGGW17, AG18] suggest that these results cannot be improved
significantly further. In particular, the polynomial dependence on precision parameters is necessary.

Our main contribution in this paper is the introduction of quantum algorithms for solving a
min-max optimization problem of the form

min
w

r(w) +
1

n

n∑
i=1

gi(w), where gi(w) = max
y∈Y

fi(y, w) , (1)

where the functions r and fi are convex with Lipschitz continuous gradients, r is strongly convex,
and Y is a finite set. This can be easily extended to the case in which each function fi is defined
on a distinct domain Yi. The size of Y can cause the evaluation of the max operator to be
computationally intractable. These problems arise frequently in applications of machine learning,
and include SVMs and SSVMs as special cases. Various algorithms have been applied to this class
of problems, including stochastic subgradient methods [SZ13] and optimal first-order methods for
nonsmooth problems [Nes05]. Other algorithms for smooth problems, such as SAGA [DBLJ14],
can be applied by replacing each function gi with an approximation that is strongly convex with a
Lipschitz continuous gradient. However, these smooth approximations typically rely on replacing
the max operator with the differentiable softmax operator [GP17, BT12], that is, each function gi

4

is replaced by the smooth approximation

gβi (w) :=
1

β
log
∑
y∈Y

eβfi(y,w) ,

which is at least as computationally difficult as evaluating the original max operator. This approxi-
mation can be interpreted from a thermodynamic perspective: each gβi represents the free energy
of a system with an energy spectrum described by fi. Our quantum algorithm relies on quantum
Gibbs sampling to estimate derivatives of the softmax operator.

Quantum Gibbs sampling achieves quadratic speedup in the size of the sample space, but can
only be used to produce an approximate gradient of the smooth functions gβi . Thus, any first-order
method applied to the smooth approximation of the objective function (1) must be modified to take
into account the error in the computed gradient. In our analysis, we show how the SAGA algorithm
can be modified so that it continues to enjoy its original O

(
log(1

ε)
)

number of iterations even in the
presence of additive error in the approximate gradients, provided the errors in gradient estimates are
accurate to within O(ε). We then consider a quantum version of SAGA that uses Gibbs sampling
as a computational kernel. For a fixed parameter β, this algorithm obtains an ε-accurate minimizer
of the smooth approximation within Õ(1

ε) queries to the oracles of fi. Assuming each fi has an

efficient oracle, that is, it uses logarithmically many qubits and gates to implement, then Õ(1
ε) is

also an upper bound on the number of quantum gates for the algorithm.
From the machine learning point of view, optimizing the smooth approximation of the objective

function (1) itself is of natural interest. The softmax approximation allows for the optimizer to
fit a reasonable model to the structured prediction problem while avoiding settling into erroneous
minima that are artifacts of limited training data. This may result in better generalization and
more-robust learning [LM01]. We show that when the goal is to devise a quantum algorithm to
solve the original min-max problem with an accuracy of ε, the smooth approximation is not the
best strategy as far as the convergence analysis shows. In order to solve the original min-max
problem using the smooth approximation, the temperature has to be assigned proportional to ε. In
total, this results in Õ(ε−3.5) queries to the oracles of fi. We instead show that using stochastic
subgradient descent [SZ13] the original problem can also be solved with an Õ(1

ε) scaling without
resorting to softmax smoothing, and using only the quantum minimum finding algorithm of [DH96].

We also provide several numerical results. We use single-spin flip Monte Carlo simulation of Ising
models to perform image tagging as an example of a structured-prediction task. We compare several
contemporary structured-prediction objective functions and demonstrate a working framework of
application of classical and quantum Gibbs samplers in machine learning. In deep learning, softmax
operators are often used in the last layers of a feedforward neural network. Our approach proposes
the use of a quantum Gibbs sampler to thicken the softmax layer of a neural network with internal
connections. The resultant architecture consists of a leading directed neural network serving as a
feature extractor, and a trailing undirected neural network responsible for smooth prediction based
on the feature vectors.

The paper is organized as follows. In Section II, we give an overview of SVMs, SSVMs, and
more-general structured-prediction problems. In Section III, we introduce the mathematical model
of the min-max optimization problem frequently used in structured prediction. We explain how
quantum Gibbs sampling can provide gradients for optimizing smooth approximation of the min-max
objective function. We then analyze the effect of approximation errors in gradient calculations
for SAGA. The main result is Theorem IV.6, which shows that the convergence of SAGA does

5

not deteriorate in the presence of sufficiently small gradient-approximation errors. We also give
corollaries that analyze the complexity of solving the smooth approximation problem and the original
min-max optimization problem using the quantum version of SAGA. Similarly Theorem IV.16 and
its corollary prove that a subgradient descent scheme devised in [SZ13] also does not deteriorate
when the calculation of subgradients is prone to probabilistic errors. This allows a combination
of the quantum minimum finding algorithm [DH96] and the subgradient descent method to solve
the original min-max optimization problem using a quantum variant of subgradient descent. In
Section V, we give the results of numerical experiments on small problem instances and study
the effect of smoothing and various temperature schedules. We also give the results of an image
tagging experiment on the MIRFLICKR25000 dataset [HL08]. In Section VI, we introduce several
structured-prediction objective functions. Finally, in Section VII, we report the results of using
Monte Carlo simulation of a Gibbs sampler in performing the image tagging task.

II. BACKGROUND

We first present a brief account of SVMs and SSVMs. We refer the reader to [Ng10] for the basics
of SVMs and to [Yu11] for SSVMs. We then introduce the more general framework of structured
prediction tasks in machine learning. These models are of particular interest in scenarios where
the numbers of labels is very large, for example, when a label can be any binary vector of a given
dimension as long as it satisfies a certain structure.

A. SVMs and SSVMs

Let X be a feature set and Y = {−1, 1} be the label set. We are also given a training dataset
S ⊆ X ×Y. A linear classifier is then given by two (tunable) parameters w and b defining a separating
hyperplane wTx + b. For a point (x, y) ∈ S, the positivity of y(wTx + b) indicates the correct
classification of x. The SVM optimization problem can be expressed as

min
w

1

2
‖w‖2

s.t. y
(
wTx+ b

)
≥ 1, ∀(x, y) ∈ S.

The constraints ensure not only that every (x, y) ∈ S is classified correctly, but also with a confidence
margin. If y(wTx+ b) is positive, one could superficially satisfy y

(
wTx+ b

)
≥ 1 by scaling up w

and b. To avoid this we minimize 1
2‖w‖

2. In other words, the constraints ensure that the distance
of S to the classifying hyperplane is at least 1/‖w‖, and the objective function asks for this margin
to be maximized.

Often, the above optimization problem is infeasible, so we would rather solve a relaxation of it
by introducing slack variables for every data point in S:

min
w,ξ

1

2
‖w‖2 + C

∑
(x,y)∈S

ξ(x,y)

s.t. y
(
wTx+ b

)
≥ 1− ξ(x,y), ∀(x, y) ∈ S

ξ(x,y) ≥ 0 ∀(x, y) ∈ S.

(2)

6

For simplicity, we will remove the bias from the rest of the analysis and consider it a trainable
feature of x. Let Y now contain more than just two classes. The score of class y is then represented
by the dot product wTy x. The Crammer–Singer formulation of the multi-class SVM problem is the
following:

min
w,ξ

1

2

∑
y∈Y
‖wy‖2 + C

∑
ξ(x,y)

s.t. wTy x− wTy′x ≥ 1− ξ(x,y),∀(x, y) ∈ S,∀y′ ∈ Y \ {y}
ξ(x,y) ≥ 0 ∀(x, y) ∈ S.

We can rewrite this in a notation more suitable for introducing SSVMs as a generalization of
SVMs. We first concatenate the weight vectors wy into a single vector:

wT = (wT1 , . . . , w
T
k) .

We then introduce the joint feature map

Φ(x, y) = (0, . . . , x, . . . , 0) ,

with x being in the y-th position and all other elements 0. Lastly, we introduce a notion of distance
or loss function on Y:

∆(y′, y) =

{
1 y = y′ ,

0 otherwise.

Then, the model can be rewritten as

min
w,ξ

1

2
‖w‖2 + C

∑
ξ(x,y)

s.t. ξ(x,y) ≥ ∆(y′, y)− wTΦ(x, y) + wTΦ(x, y′)

∀(x, y) ∈ S,∀y′ ∈ Y
ξ(x,y) ≥ 0 ∀(x, y) ∈ S.

(3)

The above model is that of an SSVM in general, with possibly more-complicated joint feature
maps and loss functions.

The problem (3) can be rewritten as a min-max problem of the form

min
w

(
f(w) =

{∑
x,y

max
y′

f(x,y)(y
′;w)

})
, (4)

where the summands f(x,y)(y
′;w) are of the form

f(x,y)(y
′;w) = ∆(y′, y)− wTΦ(x, y) + wTΦ(x, y′) (5)

up to a regularizer term 1
2‖w‖

2.
Without the regularizer term, problem (3) is therefore readily of the mathematical form of the

Lagrangian dual problems studied in [RWI16, KR17], and cutting plane or subgradient descent

7

approaches could be used to solve them efficiently under the assumption of the existence of noise-free
discrete optimization oracles. It is also a linear problem, and the quantum linear programming
technique of [AGGW17] could be used to provide quadratic speedup in the number of constraints
and variables of the problem. In most practical cases, however (see below), the instances are very
large, and it would not be realistic to assume the entire problem is available via an efficient circuit
for oracle construction. Stochastic gradient descent methods overcome this difficulty (for classical
training data) by randomly choosing training samples or mini-batches. This is also our approach in
what follows.

B. Structured Prediction

We now introduce the general framework of structured prediction as a supervised learning task
in machine learning. SSVMs are only one of the mathematical models used to solve structured
prediction problems. As we will see, the distinguishing factor between techniques for solving
structured prediction problems is the choice of an objective function similar to (5).

We will assume that structured prediction problems are equipped with the following.

(a) A training dataset S ⊆ X × Y.

X and Y are, respectively, the set of all possible inputs and outputs. The elements of Y encode a
certain structure (e.g., the syntactic representation of an English sentence). In structured prediction,
the outputs are therefore vectors instead of scalar discrete or real values. In particular, the set Y
may be exponentially large in the size of the input. This distinguishes structured prediction from
multi-class classification.

(b) A real-valued loss function ∆ : Y × Y → R.

We assume that the minimum of ∆ over its first component is uniquely attained along its diagonal,
that is,

y = arg min
y′

∆(y′, y). (6)

The goal is to find a prediction rule h : X → Y that minimizes the empirical risk

R(h) =
1

|S|
∑

(x,y)∈S

∆(h(x), y) . (7)

Without loss of generality, we may assume that ∆ vanishes on its diagonal

∆(y, y) = 0, ∀y ∈ Y , (8)

since we can always shift it to ∆′(y′, y) = ∆(y′, y)−∆(y, y). This decreases the empirical risk by
the constant 1

|S|
∑

(x,y)∈S ∆(y, y), which is an invariant of S.

(c) A scoring function sw : X × Y → R.

8

The scoring function sw(x, y) = s(x, y, w) is indicative of suitability of a label y for a given input x.
Here w is a vector of tunable parameters, often trained via a machine learning procedure on the
given training dataset S.

Example. In the SSVM framework of Section II A, the loss function is simply the Kronecker delta
function ∆(y, y′) = δy,y′ . In the model (3), the scoring function is linear in the training parameters

s(x, y, w) = wTΦ(x, y) .

In terms of a scoring function s and a loss function ∆, the objective function of (4) can be
rewritten as

fMM(w) =
∑
x,y

max
y′

{
∆(y′, y) + s(x, y′, w)− s(x, y, w)

}
, (9)

which is also called the max-margin objective function [YJ09]. One can show that solving (4) with
this objective function is a step towards solving the risk minimization problem (7), since (9) is an
upper bound on the risk function [YJ09],

RMS(w) =
∑
x,y

∆ (hMS(x), y) , (10)

where the prediction rule is

hMS(x) = arg max
y′

s(x, y′, w) , (11)

which we call here the maximum score prediction rule. This is easy to see given

∆

(
arg max

y′
s(x, y′, w), y

)
+ s(x, y, w) ≤ ∆

(
arg max

y′
s(x, y′, w), y

)
+ max

y′
s(x, y′, w)

= ∆

(
arg max

y′
s(x, y′, w), y

)
+ s(x, arg max

y′
s(x, y′, w), w)

= ∆ (y∗, y) + s(x, y∗, w) ≤ max
y′
{∆(y′, y) + s(x, y′, w)},

where y∗ = arg maxy′ s(x, y
′, w). By subtracting s(x, y, w) from both sides, we get

∆

(
arg max

y′
s(x, y′, w), y

)
≤ max

y′
{∆(y′, y) + s(x, y′, w)− s(x, y, w)}.

SVMs solve what is called the maximum-margin problem [Vap63]. Aside from machine learning
applications, this model is very well-motivated from the perspective of constrained integer pro-
gramming using quantum algorithms [RWI16, KR17]. Many generalizations of SVMs have been
proposed and used to solve multi-class prediction problems [WW+99, SFB+98, FISS03, YJ09]. In
a survey on SSVMs [Sch09], the author reviews the optimization methods for SSVMs, including
subgradient methods [Col02, ATH03, Zha04, SSSSC11], cutting plane and bundle methods [THJA04,
Joa06, TSVL07, LSV08, JFY09], polynomial-sized reformulations [TGK04, BCTM05, CGK+08],
and min-max formulations [TCK04, TLJJ06a, TLJJ06b]. Subsequently, in [LJJSP12], the authors
propose a coordinate descent approach.

9

III. SMOOTH APPROXIMATION

Section II motivates solving a particular set of min-max optimization problems in machine
learning applications. In this section, we present these mathematical programming models and
consider quantum algorithms for solving them.

A. A Min-Max Optimization Problem

We define the objective function f(w) as

f(w) = r(w) +
1

n

n∑
i=1

max
y∈Y

fi(y, w) , (12)

where w is a vector of tunable real-valued parameters, n is a positive integer, and r and all fi are
convex real-valued functions of w with Lipschitz continuous gradients. Furthermore, r is strongly
convex, and each fi is defined in its first argument y over a finite set Y. In practical examples,
r could represent a regularizer for a machine learning model. We are interested in solving the
optimization problem

w∗ = arg min
w
f(w) . (13)

Although the functions fi are differentiable, f is not generally differentiable because of the max
operator involved. However, since the max operator preserves convexity, f is a convex function.

As discussed in Section II, if fi are linear in w, this problem is readily of the mathematical
form of the Lagrangian dual problems studied in [RWI16, KR17], and cutting plane or subgradient
descent approaches could be used to solve them efficiently under the assumption of the existence
of noise-free discrete optimization oracles. The role of the discrete optimization subroutine is to
minimize fi(y, w) over its discrete variable y with fixed choices of w. Then the cutting plane and
subgradient descent meta-algorithms would converge to the optimal dual variable w∗ by iterative
calls to the optimizer.

On the other hand, in the absence of a regularizer, (13) is a linear problem of the form

min
w,µ

∑
i

µi

s.t. µi ≥ fi(y, w) ∀y ∈ Y ,
(14)

and the quantum linear programming technique of [AGGW17] can readily be used to provide a
quadratic speedup in the number of constraints and variables of the problem. In practice, however,
nonlinear regularizers play important roles. Our technique will allow for the solving of such nonlinear
problems with the same quantum speedup as in [AGGW17], but with better scaling in terms of
precision.

At its core, the quantum linear programming algorithm of [AGGW17] in particular, and more
generally the quantum SDP solvers of [BS17] and [AGGW17], rely on amplitude amplification
procedures that prepare Gibbs states up to the needed precision. It is, therefore, tempting to
use Gibbs state preparation directly to solve (13) given that, in classical algorithms, smooth
approximation of piecewise linear objective functions is a common method for designing improved

10

gradient-based solvers [BT12]. We construct such a smooth approximation of the function f , and
find the minimum of the approximation.

One approach to smoothing the max of a set of functions is softmax smoothing [BT12]. For a
finite set Y and β > 0, the softmax approximation of the max operator over a set of values Y is
defined as

max
y∈Y

βy =
1

β
log
∑
y∈Y

exp(βy) . (15)

This is the negative free energy of a physical system with an energy spectrum {−y : y ∈ Y }. We
now apply smoothing to the range of every summand fi in (12) and the resultant summation is
called the smooth approximation of f at inverse temperature β, denoted by fβ(w):

fβ(w) = r(w) +
1

n

∑
i

max
y∈Y

βfi(y, w) . (16)

We note that fβ(w) converges uniformly to f(w) in the limit of β →∞ (refer to (29) below). So, on
one hand, β can be interpreted as the thermodynamic inverse temperature at equilibrium for each
energy function −fi and, on the other hand, as a parameter controlling the amount of smoothing
imposed on f . That is, when β is large, a better approximation of f is obtained, but with a larger
Lipschitz constant for the gradient of f (i.e., less smoothness). Consequently, we approximate w∗ in
(13) with

wβ∗ = arg min
w
fβ(w) . (17)

To perform gradient-based convex optimization on fβ, we calculate its gradient via

∇wfβ(w) = ∇wr(w) +
1

n

∑
i

EYi(∇wfi(Yi, w)) , (18)

where Yi is a random variable on Y with its probability distribution function being the Boltzmann
distribution of a system with the configuration set Y, energy function −fi(y, w), and inverse
temperature β:

P(Y = y) =
exp(βfi(y, w))∑
y∈Y exp(βfi(y, w))

, y ∈ Y . (19)

B. Quantum Gibbs Sampling

We now describe the above problem in terms of Hermitian matrices we intend to simulate on
a quantum computer. For each i, we assume that the range of fi(−, w) : Y → R corresponds (up
to the sign of the values of the range) to the spectrum of a diagonal Hermitian matrix Hw

i . We
assume we have access to an oracle for Hw

i and its partial derivatives of the following form:

|k〉 |z〉 7→ |k〉 |z ⊕ (Hw
i)kk〉 and |k〉 |z〉 7→ |k〉 |z ⊕ (∂jH

w
i)kk〉 (∀j).

Here and in what follows, ∂j is used as an abbreviation of the notation of partial derivatives with
respect to the vector w, that is, ∂j = ∂/∂wj . The assumption is that access to such an oracle would

11

require logarithmically many qubits in the size of the Hermitian matrix and the output precision of
the oracle. For instance, if fi(−, w) is a quadratic polynomial in binary variables with quadratic
and linear coefficients dependent on w, we may associate the energies of an Ising model with
logarithmically many spins to the function fi(−, w). For more-general remarks on the construction
of the oracle, we refer the reader to [AGGW17, Section 2].

The operator maxβ would then simply be the negative free energy of Hw
i :

max
y∈Y

βfi(y, w) =
1

β
log Tr(exp(−βHw

i)) . (20)

Applying stochastic gradient descent for solving (17) would require calculation of the gradients of

fi(y, w) with respect to w, which is Tr(Aρ) when ρ = exp(−βH)
Tr(exp(−βH)) is the Gibbs state and every

partial derivative is given by

∂kmax
y

βfi(y, w) = Tr [(−∂kHw
i) ρ] .

This is exactly the type of quantity studied in [AGGW17]. They show that for N ×N diagonal
matrices H and A, such that ‖A‖ ≤ 1 (in the operator norm) and given an inverse temperature β,
the quantity Tr(Aρ) can be approximated up to an additive error of at most θ with high probability.
We need to slightly modify the result of [AGGW17] for our application and for reference we first
state their result.

Proposition III.1 (Corollary 12 in [AGGW17]). Let A,H ∈ Rn×n be diagonal matrices with
‖A‖ ≤ 1. An additive θ-approximation of Tr(Aρ) can be computed using O(

√
n/θ) queries to A and

H, and Õ(
√
n/θ) other gates.

In the case of diagonal matrices, the boundedness assumption on the norm of A is with respect
to the infinity norm, that is, ‖A‖∞ ≤ 1. We also need control over the success probability of the
approximation obtained in the above statement.

Lemma III.2. Suppose we have a unitary U acting on q qubits such that U |0 . . . 0〉 = |0〉 |ψ〉+ |Φ〉,
with 〈0| ⊗ I |Φ〉 = 0 and ‖ψ‖2 = p ≤ pmin for some known bound pmin. Let µ ∈ (0, 1] be the allowed

multiplicative error in our estimation of p. Then, with O
(

ζ
µ
√
pmin

)
uses of U and U−1 and using

O
(

ζq
µ
√
pmin

)
gates on the q qubits, we obtain a p̃ such that |p− p̃| ≤ µp with a probability of O(1− 1

ζ).

Proof. The proof is similar to [AGGW17, Lemma 9] with M applications of U and U−1 in the
amplitude estimation algorithm of [BHMT02, Theorem 12] except that we allow for k ≥ 2. Then

|p− p̃| ≤ 2πk

√
p(1− p)
M

+ k2 π
2

M2
≤ kπ

M

(
2
√
p+

kπ

M

)
.

So for M ≥ 3πk
µ
√
pmin

with a probability of at least 1 − 1
2(k−1) , we get |p − p̃| ≤ µp and the result

follows.

We now have the following corollary.

12

Corollary. Let A,H ∈ Rn×n be diagonal matrices with ‖A‖∞ ≤ ∆ and ‖H‖∞ ≤ K, and ρ be the
Gibbs state of H at inverse temperature β. An additive θ-approximation of Tr(Aρ) can be computed

with a success probability of at least 1 − ζ using O(
√
n∆βK
ζθ) queries to A and H, and Õ(

√
n∆βK
ζθ)

other gates∗.

Proof. This follows from the lemma above and its usage to generalize Corollaries 12 and 14 in
[AGGW17].

Condition 1. Let Y be a finite set and f : Y ×RD → R be a real-valued function. We assume that
(1) there exist ∆ > 0 such that ‖∂kf‖ ≤ ∆ for all w ∈ RD, y ∈ Y, and k = 1, . . . , D; and, (2) there
exist quantum oracles acting on O(polylog(1

δ , |Y|)) qubits to compute f and ∂kf with an additive
error of δ.

Theorem III.3. Let fi : Y × RD → R be a real-valued function satisfying Condition 1. Then the
gradients of (20) with respect to the parameter vector w can be calculated in

O

(
D2
√
|Y|∆βK
ζθ

)
queries to the oracles of fi with the number of other gates being almost of the same order. Here ∆ is
a bound on the partial derivatives ‖∂jfi(y, w)‖ at all w, K is a bound on values of all fi, and 1− ζ
is the probability that all dimensions of the gradient estimate have an additive error of at most θ.

Proof. With H i
w diagonal real-valued matrices realizing fi(−, w) and A = ∂H i

w, the boundedness of
derivatives, ‖f ′i(w)‖ for all w, is equivalent to ‖A‖ ≤ ∆. In order to estimate all partial derivatives
in the gradient with an additive error of at most θ successfully with a probability of at least 1− ζ,
we may calculate each of the partial derivatives with a success probability of at least 1 − ζ/D,
because (1− ζ

D)D ≥ 1− ζ
DD = 1− ζ . By the previous corollary, each partial derivative is therefore

calculated in O (D
√
|Y|∆βK/ζθ) and, since there are D such partial derivatives, the result follows.

IV. COMPUTATIONAL COMPLEXITY

Stochastic average gradient (SAG) [SLRB17] and its variant SAGA [DBLJ14] are two optimization
methods that are specifically designed for minimizing the sum of finitely many smooth functions.
SAG and SAGA usually perform better than standard stochastic gradient descent (SGD) [RM85].
The general idea behind SAG and SAGA is to store the gradients for each of the n functions
in a cache, and use their summation to obtain an estimation of the full gradient. Whenever we
evaluate the gradient for one (or some) of the functions, we update the cache with the new gradients.
Although the gradients in the cache are for older points, if the step size is small enough, the old
points will be close to the current point and, because the functions are smooth, the gradients in the
cache will not be far from the gradients for the current point; thus, using them will reduce the error
of estimation of the full gradient, leading to an improved convergence rate.

Standard SGD itself can also be applied to nonsmooth objective functions by replacing gradients
with subgradients [HLPR18, SZ13]. To emphasize the liberal use of subgradients, we will use

∗In the rest of this paper, such a characterization of the number of quantum gates will be referred to as being
“almost of the same order”.

13

the acronym SubSGD when SGD is applied to a nonsmooth function. Unfortunately, SubSGD is
provably suboptimal for nonsmooth optimization [HLPR18]. As a consequence of nonsmoothness,
the subgradients of nearby points are not good approximations of each other. This makes the
subgradients of the previous points uninformative about the subgradients of subsequent points.
Therefore, ideas from SAG and SAGA regarding storing the gradients in a cache would not help
the convergence of SubSGD when the objective function is the sum of finitely many summand
functions. However, several other variants of SubSGD, for example, SubSGD with suffix averaging
[RSS+12] or SubSGD with polynomial-decay averaging [SZ13, LJSB12] (SubSGDP), achieve the
optimal convergence rate.

Here we provide a time complexity analysis on the optimization of problem (12) and its smooth
approximation (16). Our approach is to use SubSGDP to optimize the nonsmooth objective function
f and to use SAGA to optimize the smooth, strongly convex objective function fβ(w). In the
former case, quantum minimum finding will provide the subgradients for SubSGDP. In the latter
case, a quantum Gibbs sampler will provide approximations of the derivatives of the functions
maxβy fi(y, w) (but not exactly), as stated in Theorem III.3. Consequently, we need to revisit the
convergence of SubSGDP and SAGA in the presence of errors in calculating the gradients and do so
in the following sections. In this section, the notation 〈−,−〉 is used to represent the inner products
of real numbers. Before resuming, we prove a useful lemma.

Lemma IV.1. Let the functions fi : Y × RD → R be convex and the function r : RD → R strongly
convex, resulting in each gi(w) := r(w) + maxy fi(y, w) being µ-strongly convex. The vector w is
restricted to a convex set W ⊆ RD, and there exists w0 ∈ W such that gi(w0) = 0 for all i. The
partial derivatives are bounded by

∆ = max
w,i,j,y

‖∂j [r(w) + fi(y, w)]‖ , (21)

where the maximum ranges over every index i, every y ∈ Y, every w ∈ W, and every j-th component
of w. The following statements hold.

(a) For any w1, w2 ∈ W we have ‖w1 − w2‖ ≤ 2
√
D∆
µ .

(b) For any index i and point w ∈ W, we have |gi(w)| ≤ 2D∆2

µ .

Proof. Using strong convexity, for any i we have

gi(w1) ≥ gi(w2) + 〈w1 − w2,∇gi(w2)〉+
µ‖w1 − w2‖2

2
, and

gi(w2) ≥ gi(w1) + 〈w2 − w1,∇gi(w1)〉+
µ‖w1 − w2‖2

2
.

By adding these two inequalities,

〈w1 − w2,∇gi(w1)〉+ 〈w2 − w1,∇gi(w2)〉 ≥ µ‖w1 − w2‖2.

Using the Cauchy–Schwarz inequality,√
‖w1 − w2‖2

√
‖∇gi(w1)‖2 +

√
‖w2 − w1‖2

√
‖∇gi(w2)‖2 ≥ µ‖w1 − w2‖2.

Finally, since D∆2 ≥ ‖∇gi(w)‖2 for any w ∈ W, we conclude that 2
√
D∆ ≥ µ‖w1 − w2‖, proving

claim (a).

14

By convexity and the definition of w0, we have

gi(w0) ≥ gi(w) + 〈w0 − w,∇gi(w)〉.

Using the Cauchy–Schwarz inequality and gi(w0) = 0, we get

√
‖w0 − w‖2

√
‖∇gi(w)‖2 ≥ gi(w) .

Using (a) and ‖∇gi(w)‖2 ≤ D∆2, we get 2D∆2

µ ≥ gi(w). By a similar argument starting with

gi(w) ≥ gi(w0) + 〈w − w0,∇gi(w0)〉,

we have gi(w) ≥ −2D∆2

µ , which completes the proof of (b).

A. A-SAGA: Approximate SAGA

In this section, we analyze SAGA under an additive error in calculation of the gradients. Until
Section IV D, we assume the following condition is satisfied.

Condition 2. Each function fi is convex and the function r is strongly convex, resulting in each
gi(w) = r(w) + maxy fi(y, w) being µ-strongly convex. The vector w is restricted to a convex set W .
Furthermore, the gradients of r(w) + fi(y, w) are `-Lipschitz smooth, and the partial derivatives are
bounded by

∆ = max
w,i,j,y

‖∂j [r(w) + fi(y, w)]‖ , (22)

where the maximum ranges over every index i, every y ∈ Y , every w ∈ W , and every j-th component
of w. Finally, by shifting each gi via a constant if needed, we may assume that there is some w0 ∈ W
such that gi(w0) = 0 for all i.

We recall the SAGA algorithm from [DBLJ14]. In the approximate SAGA algorithm (A-SAGA),
we have an estimate of the gradient with an additive error of at most θ/3 † in each partial derivative
appearing in the gradient. We let

g(w) =
1

n

∑
i

gi(w) .

†The division by 3 was chosen to simplify the formulae.

15

A-SAGA: Given the value of wt and of each g′i(φ
t
i) at the end of iteration t, the updates for

iteration t+ 1 are as follows:

1. For a random choice of index j, set φt+1
j = wt, and φt+1

i = φti for all i not equal j, and

store g′j(φ
t+1
j) + Υt+1

j in a table, where the vector Υt+1
j is the additive error in the gradient

estimation of g′j(φ
t+1
j).

2. Using g′j(φ
t+1
j) + Υt+1

j , g′j(φ
t
j) + Υt

j , and the table average, update w according to

vt+1 = wt − γ

[
g′j(φ

t+1
j)− g′j(φtj) +

1

n

n∑
i=1

g′i(φ
t
i)

]
+ γΘt+1 and

wt+1 = ΠW(vt+1),

(23)

where Θt+1 contains the contributions of all additive errors, and ΠW denotes projection
onto the set W.

Here the update rule for SAGA from [DBLJ14, Equation (1)] has been modified to take into account
an approximation error Θt+1 in step t+ 1, where the vector Θt+1 comprises all the additive errors,
(that arise from the Gibbs sampler in the following section‡), that is,

Θt+1 = Υt+1
j −Υt

j +
1

n

n∑
i=1

Υt
i. (24)

Note that for all vectors Υt
i, every element has an absolute value of at most θ/3. Based on the

definition of Θt+1 from (24), we can conclude that every element of the vector Θt+1 is at most θ.
Defazio et al. prove the three lemmas below [DBLJ14]. Following their convention, all expecta-

tions are taken with respect to the choice of j at iteration t+ 1 and conditioned on wt and each
g′i(φ

t
i) and additive errors Υt

j , unless otherwise stated.

Lemma IV.2. Let g(w) = 1
n

∑n
i=1 gi(w). Suppose each gi is µ-strongly convex and has Lipschitz

continuous gradients with constant L. Then for all w and w∗:〈
g′(w), w∗ − w

〉
≤ L− µ

L
[g(w∗)− g(w)]− µ

2
‖w∗ − w‖2

− 1

2Ln

∑
i

∥∥g′i(w∗)− g′i(w)
∥∥2 − µ

L

〈
g′(w∗), w − w∗

〉
.

Lemma IV.3. For all φi and w∗:

1

n

∑
i

∥∥g′i(φi)− g′i(w∗)∥∥2 ≤ 2L

[
1

n

∑
i

gi(φi)− g(w∗)−
1

n

∑
i

〈
g′i(w∗), φi − w∗

〉]
.

The last lemma in [DBLJ14] is only true if the error in the A-SAGA update rule is disregarded.
We therefore restate this lemma as follows.

‡In fact, the Gibbs sampler is used to calculate each directional derivative up to an additive error. Therefore, the
approximation errors in all the terms in the square brackets in (23) contribute to the bound on Θ. More precisely, if
the Gibbs sampler calculates the derivatives with error θ

3
, then ‖Θt+1‖∞ ≤ θ.

16

Lemma IV.4. For any φti, w∗, w
t and α > 0, with vt+1 as defined in SAGA, if

X = g′j(φ
t
j)− g′j(wt) + g′(w∗)−

1

n

∑
i

g′i(φ
t
i) ,

it holds that

E[X] = g′(wt)− g′(w∗) (25)

E‖X‖2 ≤ (1 + α−1)E
∥∥g′j(φtj)− g′j(w∗)∥∥2

+ (1 + α)E
∥∥g′j(wt)− g′j(w∗)∥∥2 − α

∥∥g′(wt)− g′(w∗)∥∥2
.

(26)

The main result of [DBLJ14] creates a bound for ‖wt − w∗‖ using the Lyapunov function T
defined as

T t := T (wt, {φti}ni=1) :=
1

n

∑
i

gi(φ
t
i)− g(w∗)−

1

n

∑
i

〈
g′i(w∗), φ

t
i − w∗

〉
+ c

∥∥wt − w∗∥∥2
, (27)

by proving the inequality E[T t+1] ≤ (1− 1
τ)T t. We will follow the logic of the same proof to obtain

a similar result in the case that an additive error on the gradients exists.

Theorem IV.5. Let w∗ be the optimal solution, γ be the step size in (23), c be the constant in
(27), α be the constant in (26), and θ be a bound on the precision of a subroutine calculating the
gradients of gi at every point. There exists a choice of γ, c, τ, and θ such that for all t,

E[T t+1] ≤ (1− 1

τ
)T t .

Proof. The first three terms in T t+1 can be bounded in a way similar to the proof of [DBLJ14,
Theorem 1]:

E

[
1

n

∑
i

gi(φ
t+1
i)

]
=

1

n
g(wt) +

(
1− 1

n

)
1

n

∑
i

gi(φ
t
i)

E

[
− 1

n

∑
i

〈
g′i(w∗), φ

t+1
i − w∗

〉]
= − 1

n

〈
g′(w∗), w

t − w∗
〉
−
(

1− 1

n

)
1

n

∑
i

〈
g′i(w∗), φ

t
i − w∗

〉
.

The last term is bounded by the inequality

c
∥∥wt+1 − w∗

∥∥2
= c

∥∥ΠW(vt+1)−ΠW [w∗ − γg′(w∗)]
∥∥2 ≤ c

∥∥vt+1 − w∗ + γg′(w∗)
∥∥2

,

by the optimality of w∗ and non-expansiveness of the projection operator ΠW . We can now bound
the expected value of the right-hand side of this inequality in terms of X and ‖wt−w∗‖ by expanding
the quadratics.

cE
∥∥vt+1 − w∗ + γg′(w∗)

∥∥2
= cE

∥∥wt − w∗ + γX + γΘt+1
∥∥2

= c
∥∥wt − w∗∥∥2

+
{

2cE
[〈
γX + γΘt+1, wt − w∗

〉]
+ cE

∥∥γX + γΘt+1
∥∥2
}

= c
∥∥wt − w∗∥∥2

+
{
− 2cγ

〈
g′(wt)− g′(w∗), wt − w∗

〉
+ 2cγE

[〈
Θt+1, wt − w∗

〉]
+cγ2E ‖X‖2 + 2cγ2E

[
〈Θt+1, X〉

]
+ cγ2E

∥∥Θt+1
∥∥2
}

17

Using Jensen’s inequality applied to the square root function, in the second inequality below, and
then using

√
x ≤ 1

2 + x
2 , we have

E
[
〈Θt+1, X〉

]
≤ θ
√
DE [‖X‖] ≤ θ

√
D
√

E [‖X‖2] ≤ θ
√
D

2
+
θ
√
DE‖X‖2

2
.

We now apply Lemma IV.4 and the assumption that ‖Θt+1‖ ≤ θ
√
D.

cE
∥∥vt+1 − w∗ + γg′(w∗)

∥∥2

≤ c
∥∥wt − w∗∥∥2

+
{
− 2cγ

〈
g′(wt)− g′(w∗), wt − w∗

〉
+ 2cγE

[〈
Θt+1, wt − w∗

〉]
+
(
cγ2(1 + θ

√
D)
)
E ‖X‖2 + cγ2θ

√
D + cγ2E

∥∥Θt+1
∥∥2
}

≤ c
∥∥wt − w∗∥∥2

+
{
−2cγ

〈
g′(wt), wt − w∗

〉
+ 2cγ

〈
g′(w∗), w

t − w∗
〉

+ 2cγθ
√
D‖wt − w∗‖

−
(
cγ2(1 + θ

√
D)
)
α
∥∥g′(wt)− g′(w∗)∥∥2

+
(
1 + α−1

) (
cγ2(1 + θ

√
D)
)
E
∥∥g′j(φtj)− g′j(w∗)∥∥2

+ (1 + α)
(
cγ2(1 + θ

√
D)
)
E
∥∥g′j(wt)− g′j(w∗)∥∥2

+cγ2θ
√
D + cγ2θ2D

}
.

We now apply Lemma IV.2 and Lemma IV.3 to respectively bound −2cγ
〈
g′(wt), wt − w∗

〉
and

E
∥∥∥g′j(φtj)− g′j(w∗)∥∥∥2

:

cE
∥∥wt+1 − w∗

∥∥2 ≤ (c− cγµ)
∥∥wt − w∗∥∥2

+

{(
(1 + θ

√
D)(1 + α)cγ2 − cγ

L

)
E
∥∥g′j(wt)− g′j(w∗)∥∥2

−2cγ(L− µ)

L

[
g(wt)− g(w∗)−

〈
g′(w∗), w

t − w∗
〉]
− cγ2(1 + θ

√
D)α

∥∥g′(wt)− g′(w∗)∥∥2

+2
(

1 + θ
√
D
) (

1 + α−1
)
cγ2L

[
1

n

∑
i

gi(φ
t
i)− g(w∗)−

1

n

∑
i

〈
g′i(w∗), φ

t
i − w∗

〉]

+cγ2θ
√
D + cγ2θ2D + 2cγθ

√
D‖wt − w∗‖

}
.

As in [DBLJ14, Theorem 1], we pull out a 1
τ factor of T t and use the above inequalities, taking into

account the contributions from the three error terms above:

E[T t+1]− T t ≤ −1

τ
T t +

(
1

n
− 2cγ(L− µ)

L
− 2cγ2µα(1 + θ

√
D)

)[
g(wt)− g(w∗)−

〈
g′(w∗), w

t − w∗
〉]

+

(
1

τ
+ 2(1 + α−1)(1 + θ

√
D)cγ2L− 1

n

)[
1

n

∑
i

gi(φ
t
i)− g(w∗)−

1

n

∑
i

〈
g′i(w∗), φ

t
i − w∗

〉]

+

(
1

τ
− γµ

)
c
∥∥wt − w∗∥∥2

+

(
(1 + α)γ(1 + θ

√
D)− 1

L

)
cγE

∥∥g′j(wt)− g′j(w∗)∥∥2

+
{
cγ2θ
√
D + cγ2θ2D + 2cγθ

√
D‖wt − w∗‖

}

18

According to Lemma A.1 in Appendix A, we can ensure that all round parentheses in the first three
lines are non-positive by setting the parameters according to

γ =
1

(1 + α)(1 + θ
√
D)L

, c =
2

nγ
, α = 8,

1

τ
= min

{
1

2n
,
γµ

2

}
,

and θ = min

{
1√
D
,

µ‖wt − w∗‖2

2
√
D
(

5
18L + 2‖wt − w∗‖

)} . (28)

With this setting of the parameters,(
1

τ
− γµ

)
c
∥∥wt − w∗∥∥2

+
{
cγ2θ
√
D + cγ2θ2D + 2cγθ

√
D‖wt − w∗‖

}
≤ 0 .

Using the non-negativity of the expressions in square brackets completes the proof.

Remark. Note that in (28), the step size γ does not depend on the strong convexity parameter µ.
This is a desirable property called “adaptivity to strong convexity”.

The next theorem provides the time complexity of optimizing the smooth approximation fβ

via A-SAGA, depending on the condition number L/µ, where L is the Lipschitz constant of the
gradient of fβ.

Theorem IV.6. Under Condition 2, and given ε as a target precision, A-SAGA finds a point in
the ε-neighbourhood of wβ∗ defined in (17) using

O

((
n+

βD∆2 + `

µ

)(
log

1

ε
+ log n− log(βD∆2 + `)

))
gradient evaluations.

Proof. As in [DBLJ14, Corollary 1], we note that c
∥∥wt − w∗∥∥2 ≤ T t. Therefore, by chaining the

expectations

E
[∥∥wt − w∗∥∥2

]
≤ C0

(
1− 1

τ

)t
,

where

C0 =
∥∥w0 − w∗

∥∥2
+

1

c

[
f(w0)−

〈
f ′(w∗), w

0 − w∗
〉
− f(w∗)

]
.

Therefore, we should have

t ≥
log 1

ε + logC0

− log
(
1− 1

τ

) .
Using the inequality log(1− x) ≤ −x, it suffices that

t ≥ τ
(

log
1

ε
+ logC0

)
.

19

From (28), we know that

τ = max

{
2n,

2

γµ

}
≤ max

{
2n,

36L

µ

}
,

where we have used the fact that θ ≤ 1√
D

. So, we get

t ≥ max

{
2n,

36L

µ

}(
log

1

ε
+ logC0

)
.

We recall that r(w)+maxβy∈Yfi(y, w) = maxβy∈Yr(w)+fi(y, w) has Lipschitz continuous gradients

with parameter βD∆2 + ` (see [BT12]), so the function fβ has Lipschitz continuous gradients with
parameter L = βD∆2 + `. We also note that C0 = O(1/c) = O(nL) = O(n

βD∆2+`
). Therefore, when

fβ is sufficiently smooth, that is,

L

µ
=
βD∆2 + `

µ
≤ n

18
,

we have

t = O

(
n

(
log

1

ε
+ log n− log(βD∆2 + `)

))
,

and otherwise

t = O

(
βD∆2 + `

µ

(
log

1

ε
+ log n− log(βD∆2 + `)

))
.

We can combine these two bounds into one:

t = O

((
n+

βD∆2 + `

µ

)(
log

1

ε
+ log n− log(βD∆2 + `)

))
.

This completes the proof.

Remark. The number of gradient evaluations in Theorem IV.6 is O
(
log 1

ε

)
in terms of ε only. Also,

based on (28), we have θ = O(ε).

B. Using A-SAGA to Optimize the Nonsmooth Objective Function

Recall that w∗ denotes the minimum of f(w) and wβ∗ the minimum of the smooth approximation
fβ(w). In this section, we analyze the inverse temperature β at which sampling from the quantum

Gibbs sampler has to happen in order for wβ∗ to be a sufficiently good approximation of the original
optimum w∗.

Lemma IV.7. To solve the original problem (13) with ε-approximation, it suffices to solve the

smooth approximation (16) for β > log |Y|
ε with precision ε− log |Y|

β .

20

Proof. The softmax operator maxβ is an upper bound on the max function satisfying

max
y∈Y

υ(y) ≤ max
y∈Y

βυ(y) ≤ max
y∈Y

υ(y) +
log |Y|
β

, (29)

for any function υ [NS16]. Using this inequality and the optimality of w∗ and wβ∗ , it follows that

f(w∗) ≤ f(wβ∗) ≤ fβ(wβ∗) ≤ fβ(w∗) ≤ f(w∗) +
log |Y|
β

Therefore, 0 ≤ fβ(wβ∗)− f(w∗) ≤ log |Y|
β . So, in order to solve the original problem within an error

of ε, that is, f(wt)− f(w∗) ≤ ε, it is sufficient to have log |Y|
β < ε, and

fβ(wt)− fβ(wβ∗) ≤ ε− log |Y|
β

.

resulting in

fβ(wt)− f(w∗) ≤ ε,

and using the fact that f(wt) ≤ fβ(wt), we can conclude that

f(wt)− f(w∗) ≤ ε,

completing the proof.

Lemma IV.8. In solving problem (17) with A-SAGA we have

E
[
fβ(wt)− fβ(w∗)

]
≤ L

2
C0

(
1− 1

τ

)t
.

Proof. By the descent lemma [Nes13, Lemma 1.2.4], we have

fβ(w)− fβ(w∗) ≤ 〈∇fβ(w∗), w − w∗〉+
L

2
‖w − w∗‖2.

The smoothness of the function fβ, the optimality of w∗, and the convexity of W imply that
〈∇fβ(w∗), w − w∗〉 ≤ 0, and therefore

fβ(w)− fβ(w∗) ≤
L

2
‖w − w∗‖2. (30)

The result now follows from Theorem IV.5.

The above two lemmas are useful for achieving an approximation of the optimal value of f by
doing so for fβ.

Theorem IV.9. Under Condition 2, A-SAGA applied to the function fβ at

β =
2 log |Y|

ε
(31)

requires O
(

(D∆2 log |Y|
µε + `

µ)
(
log 1

ε + log n
))

gradient evaluations to find a point at which the value

of f is in the ε-neighbourhood of the optimal value of f , provided ε is sufficiently small.

21

Proof. Based on Lemma IV.7, it suffices to find a point at which the value of fβ is in the(
ε− log |Y|

2β

)
-neighbourhood of its optimal value. Using Lemma IV.8, we need

E
[
f(wt)− f(w∗)

]
≤ L

2
C0

(
1− 1

τ

)t
≤ ε− log |Y|

2β
=
ε

2
. (32)

Following the same steps as in Theorem IV.6, we conclude that

t ≥
log 2

ε + log C0L
2

− log
(
1− 1

τ

) . (33)

Using the inequality log(1− x) ≤ −x, it suffices that

t ≥ τ
(

log
2

ε
+ log

C0L

2

)
. (34)

From (28), we know that

τ = max

{
2n,

2

γµ

}
≤ max

{
2n,

36L

µ

}
, (35)

where we have used the fact that θ ≤ 1√
D

.

We recall that r(w)+maxβy∈Yfi(y, w) = maxβy∈Yr(w)+fi(y, w) has Lipschitz continuous gradients

with parameter βD∆2 + ` (see [BT12]), so the function fβ has Lipschitz continuous gradients with
parameter L = βD∆2 + `. Hence,

τ ≤ max

{
2n,

36(βD∆2 + `)

µ

}
. (36)

Since β = 2 log |Y|
ε , for sufficiently small ε, the second term dominates and we have

τ ≤ 36(βD∆2 + `)

µ
. (37)

Replacing the values of L, µ, and τ in the formulae, we get

t ≥
36(2 log |Y|

ε D∆2 + `)

µ

(
log

2

ε
+ log

C0L

2

)
. (38)

Note that C0L = O(Lc) = O(n), so the time complexity is t = O
(

(D∆2 log |Y|
µε + `

µ)
(
log 1

ε + log n
))

,

proving the claim.

Remark. The number of gradient evaluations in Theorem IV.9 is O
(

1
ε log 1

ε

)
in terms of ε. We should

mention that the best complexity (in terms of precision) for optimizing (12) is O(1
ε) [SZ13, Nes05],

matching the theoretical optimal bound. Our result is close to optimal (up to a logarithmic factor).
It is also interesting to observe that based on (28), we have θ = O(

√
ε), which means that to

optimize f , we do not need as much precision as for optimizing fβ . Surprisingly, the error in gradient
evaluations could be orders of magnitude larger than the desired precision and the algorithm would
still converge with the same rate as in SAGA.

22

Example. A special case of practical importance is when the functions fi are linear in w, that is,
in the form of (57). In this case our optimization problem is

f(w) = λ
‖w‖2

2
+

1

n

n∑
i=1

max
y∈Y
{ai,yw + bi,y} . (39)

Let W = BD(0, 1) be the unit ball centred at the origin of RD, where D is the dimension of w.
For the linear functions, the Lipschitz constant of the gradients is 0, as the gradient does not change.

For the regularizer λ‖w‖
2

2 , the Lipschitz constant of the gradient is λ. Therefore, ` = λ. For the
bound on the partial derivatives of the functions, we have ∆ = λ+ maxi maxj maxy |ai,y,j |, where
ai,y,j is the j-th element of the vector ai,y.

A further special case is when the functions fi remain linear in w but are quadratic in y, e.g.,
the energy function of an Ising model,

f(w) = λ
‖w‖2

2
+

1

n

n∑
i=1

max
y∈Y
{yJiyT + hiy

T } , (40)

where Y = {−1, 1}m, Ji ∈ Rm×m, and hi ∈ Rm, for an Ising model with m particles. Here the
vector w includes all the elements of the matrices Ji and vectors hi for all i. In this case W is the
unit ball of dimension D = nm(m+ 1) around the origin. Similar to the previous example, since fi
are linear, we still have ` = λ. For the bound on the gradient of the functions, we have ∆ = λ+ 1,
where we use the fact that the elements of y are in {−1, 1}.

Finally, we can show convergence of A-SAGA to an approximation of the optimal solution of f .

Corollary. With the same conditions as Theorem IV.9, A-SAGA finds a point in the ε-neighbourhood

of w∗ with O
(

(D∆2 log |Y|
µε + `

µ)
(
log 1

ε + log n− logµ
))

gradient evaluations.

Proof. This follows from the previous theorem and the definition of strong convexity.

C. Comparison of SAGA and A-SAGA

To optimize fβ using SAGA with exact gradient evaluations, instead of the parameters from
(28), we set

γ =
1

2(µn+ L)
, c =

1

2γ(1− γµ)n
, α =

2µn+ L

L
, and

1

τ
= γµ (41)

according to [DBLJ14], with no assignment of θ (since there are no additive errors after all).
Following the same steps as in the proof of Theorem IV.6, Theorem IV.9 and its corollary, we may
optimize fβ in order to estimate the optimal solution of f .

Theorem IV.10. Let f , fβ, r, fi, `, µ, ∆, and ε be given as in Theorem IV.6. Then SAGA uses

O

((
n+

βD∆2 + `

µ

)(
log

1

ε
+ log n− log (µn+ βD∆2 + `)

))
(42)

23

gradient evaluations to find a point in the ε-neighbourhood of wβ∗ defined in (17) and

O

((
n+

D∆2 log |Y|
ε + `

µ

)(
log

1

ε
+ log n

))
(43)

gradient evaluations to find an ε-approximation of the optimal value of f .

It is clear that the scaling in (42) with respect to all parameters is similar to Theorem IV.6
and the scaling in (43) is similar to Theorem IV.9, except for an extra n term added in the first
parentheses.

Remark. We summarize the results of Theorem IV.6, Theorem IV.9, and Theorem IV.10 by making
the remark that with O(ε) and O(

√
ε) additive errors in gradient evaluations, the scaling of SAGA

and A-SAGA for respectively optimizing fβ and f remains similar.

D. Q-SAGA: A Quantum Algorithm for Optimizing the Smooth Approximation

In Theorem IV.6 and Theorem IV.9, we have assumed that the additive error in calculating the
partial derivatives is always at most θ/3. Using the quantum Gibbs sampler from Section III B,
we can guarantee such an upper bound only with a non-zero probability of failure. As shown in
Theorem III.3, the gradients of the function maxβy r(w) + fi(y, w) can be estimated with additive
errors of at most θ in all partial derivatives appearing in the gradient with a probability of at least 1−ζ
in O (D2

√
|Y|∆βK/ζθ) queries, where ∆ is a bound on the norms of the partial derivatives and K is a

bound on the function values. We now propose a quantum algorithm, called Q-SAGA, for optimizing
the smooth approximation function fβ(w) (by combining Theorem III.3 with Theorem IV.6) and
for optimizing the original function f (by combining Theorem III.3 with Theorem IV.9), using a
quantum Gibbs sampler. Here β is a fixed inverse temperature. The higher this value is, the more
accurate the approximation of f(w) via fβ(w) will be. This is at the expense of a worse scaling in
terms of β.

Lemma IV.11. Under Condition 1 and Condition 2, each gradient evaluation takes

O

(
D3.5β(1

βD∆2+`
+
√
ε)
√
|Y|∆3

ζµ2ε

)

queries to the oracle for one of the fi with the number of other quantum gates being almost of the
same order, where 1− ζ is the probability of the Gibbs sampler returning a gradient estimate whose
additive errors in all partial derivatives are at most θ, with θ determined using (28).

Proof. Each iteration of A-SAGA requires finding all partial derivatives of fi for a random choice of
i with precision θ. Since ε is small, based on (28), we have θ = O(1√

D

µε
1

βD∆2+`
+
√
ε
). We also note that

∆, which is a bound on the partial derivatives of maxyr(w) + fi(y, w), is also a bound on the partial
derivatives of maxy

βr(w) + fi(y, w), because ∇wmaxy
βr(w) + fi(y, w) = E(∇w[r(w) + fi(Yi, w)]).

Also, according to Lemma IV.1, 2D∆2

µ is a bound on the values of r(w) + fi(y, w). Therefore, each
gradient calculation is performed in O (D3.5β(1

βD∆2+`
+
√
ε)
√
|Y|∆3/ζµ2ε) according to Theorem III.3,

concluding the proof.

24

Theorem IV.12. Under Condition 1 and Condition 2, given sufficiently small ε > 0 as a target
precision, Q-SAGA finds a point in the ε-neighbourhood of wβ∗ defined in (17) with a probability of
at least 1/2, in

O

(
D3.5β

√
|Y|∆3

(βD∆2 + `)µ2ε
n2

(
log

1

ε
+ log n

)2
)

queries to the oracle for one of the fi with the number of other quantum gates being almost of the
same order, when fβ is sufficiently smooth (i.e., the condition number L/µ is sufficiently small),
and otherwise, in

O

(
D3.5β

√
|Y|∆3

µ4ε
(βD∆2 + `)

(
log

1

ε
+ log n

)2
)

queries to the oracle for one of the fi with the number of other quantum gates being almost of the
same order. In both cases, the complexity is O(1

ε log2 1
ε) in terms of ε only.

Proof. Since ε is small, and β, M , and ` are fixed, we can simplify the result of Lemma IV.11 and

conclude that each gradient could be estimated in O

(
D3.5
√
|Y|∆3

(D∆2+`/β)ζµ2ε

)
queries to the oracle for one

of the fi and the same order of other quantum gates. Suppose the probability of failure in satisfying
the bound θ/3 for all partial derivatives appearing in the gradients and for any single iteration of
gradient evaluation is at most ζ = 1

2T for some positive integer T . Then in T iterations of Q-SAGA,
the probability of all gradient evaluations satisfying the additive θ/3 upper bound is larger than
(1− ζ)T ≥ 1−

(
1

2T

)
T ≥ 1

2 . The result follows from Theorem IV.6.

Theorem IV.13. Under Condition 1 and Condition 2, given sufficiently small ε > 0 as a target
precision, Q-SAGA finds a point in the ε-neighbourhood of w∗ defined in (13) with a probability of
at least 1/2 in

O

((
D5.5∆7

√
|Y| log3 |Y|

µ4ε3.5

)(
log

1

ε
+ log n

)2
)

queries to the oracle for one of the fi with the number of other quantum gates being almost of the
same order. This is O(1

ε3.5
log2 1

ε) in terms of ε only.

Proof. By replacing the value of β from (31), each gradient evaluation costs

O

(
1

ζµε
D2.5 log |Y|

ε

(
1

log |Y|
ε D∆2 + `

+
√
ε

)√
|Y|∆D∆2

µ

)

queries to the oracle for one of the fi and the same order of other quantum gates accord-

ing to Lemma IV.11. Using the fact that ε is small, this simplifies to O

(
D3.5 log |Y|

√
|Y|∆3

ζµ2ε1.5

)
.

From Theorem IV.9, we know that we need O
(

(D∆2 log |Y|
µε + `

µ)
(
log 1

ε + log n
))

gradient eval-

uations. Using the fact that ε is small, this simplifies to O
(

(D∆2 log |Y|
µε)

(
log 1

ε + log n
))

. By

multiplying the number of gradient estimations with the complexity of each, we get a total

25

complexity of O

((
D3.5 log |Y|

√
|Y|∆3

ζµ2ε1.5

)
(D∆2 log |Y|

µε)
(
log 1

ε + log n
))

. As with the proof of Theo-

rem IV.12 we should satisfy a failure probability of at most O(1
T) and get a total complexity

of O

((
D3.5 log |Y|

√
|Y|∆3

µ2ε1.5

)
(D∆2 log |Y|

µε)2
(
log 1

ε + log n
)2)

which, after simplification, completes the

proof.

E. A-SubSGDP: Approximate SGD with Polynomial-Decay Averaging

In the previous section, we observed that Q-SAGA is efficient at approximating a minimizer (17)
of the smooth approximation of the function f as defined in (12). This was shown in Theorem IV.12.
However, in Theorem IV.13 we saw that using Q-SAGA to approximate the minimizer of the
function f itself results in a scaling of Õ(1

ε3.5
) in terms of precision. From the machine learning

perspective, optimizing the smooth approximation itself is of natural interest. However, from a
complexity theoretic point of view, studying a stochastic gradient descent method for solving the
original problem without using softmax smoothing or quantum Gibbs sampling is instrumental.
In this section, we show that, using the quantum minimum finding algorithm of [DH96], we can
achieve a better scaling for optimizing the function f directly. We also observe that the condition of
differentiability of the function f may be relaxed in this framework.

We define, for all indices i,

gi(w) = r(w) + max
y∈Y

fi(y, w) .

Our objective function can therefore be rewritten as

f(w) =
1

n

n∑
i=1

gi(w) .

We assume the following condition about the function f .

Condition 3. Each function fi is convex and the function r is strongly convex, resulting in each
gi being µ-strongly convex. The vector w is restricted to a convex set W. Furthermore, the
subgradients of r(w) + fi(y, w) exist and have the bounded norms

sup
w,i,y

{
‖v‖2 : v ∈ ∂[r(w) + fi(y, w)]

}
≤M , (44)

where the supremum ranges over every index i, every y ∈ Y, and every w ∈ W. Finally, we may
assume that there is some w0 ∈ W such that gi(w0) = 0 for all i by shifting each gi via a constant
if needed. Moreover, each function fi has an efficient quantum oracle, that is, one that acts on
O(polylog(1

δ , |Y|)) qubits to compute f with an additive error of δ.

Note that Condition 3 is different from Condition 2. In Condition 2, the functions f and r had
Lipschitz continuous gradients, whereas here there is no such restriction. Also, in Condition 2,
we imposed a bound ∆ on the partial derivatives, whereas in this condition M is a bound on the
subgradients.

The algorithm is as follows. We use the SubSGDP algorithm of [SZ13], where, at each iteration,
we compute a maximizer y for a function fi using the quantum minimum finding algorithm

26

[AK99, DH96]. In the end, we return the weighted average of w at each iteration according to
the polynomial-decay averaging scheme. SubSGDP, combined with the quantum minimum finding
algorithm, yields what we refer to as the quantum SubSGDP (Q-SubSGDP) algorithm.

Before analyzing Q-SubSGDP, we introduce and analyze the approximate variant of SubSGDP.
The source of error in A-SAGA was an additive error in computation of the gradients. However, in
approximate SubSGDP (A-SubSGDP), the source of error is a probabilistic rate of failure in finding
a maximizer for the discrete optimization of fi over Y.

A-SubSGDP: Given an initial point w0 ∈ W , an iteration count T , and a natural number η ∈ N,
repeat the steps below to obtain a sequence w1, w2, . . . , wT , and return a vector w̄Tη , which is a

weighted average of w1, w2, . . . , wT according to the polynomial-decay averaging formula.

1. For a uniformly distributed random choice of an index i, out of n possible indices, estimate
ỹti = maxy∈Y fi(y, w

t), with a success probability of at least 1−pt. We denote this estimation
by ŷti .

2. Update w according to

∂̂gi(wt) = ∂(h(wt) + fi(ŷ
t
i , w

t)),

vt+1 = wt − γt∂̂gi(wt),
wt+1 = ΠW(vt+1),

w̄t+1
η =

t

t+ η + 1
w̄tη +

η + 1

t+ η + 1
wt+1,

(45)

where ΠW is the projection operator into the convex set W.

We now analyze the convergence of A-SubSGDP. Recall that a minimizer of f is denoted by w∗,
that is, w∗ = arg min f(w). From this point onward, we use the following additional notation.

Definition IV.1. Given the positive integers η, t ∈ N+ and µ > 0, which is a strong convexity
parameter, we set

γt =
η

µ(t+ η)
and pt =

1

4
√
t+ η

.

Lemma IV.14 is the same as Lemma 2 from [RSS+12], which we restate here along with its proof.

Lemma IV.14. Under Condition 3, for any w ∈ W, we have

‖w − w∗‖2 ≤
4M

µ2
.

Proof. Note that the function f is µ-strongly convex with subgradients bounded by M . By strong
convexity, we have

f(w∗) ≥ f(w) + 〈∂f(w), w − w∗〉+
µ

2
‖w − w∗‖2.

By the optimality of w∗, we have f(w)− f(w∗) ≥ 0 and, therefore,

µ

2
‖w − w∗‖2 ≤ 〈∂f(w), w∗ − w〉.

27

Using the Cauchy–Schwarz inequality, we have

µ

2
‖w − w∗‖2 ≤

√
‖∂f(w)‖2

√
‖w − w∗‖2.

Squaring both sides and using the bound M proves the lemma.

We may now find the convergence rate of ‖wt −w∗‖2 in Lemma IV.15. This lemma is analogous
to Lemma 1 from [RSS+12], but has been adapted to take the different step size and the probability
of failure in finding the correct subgradients into account.

Lemma IV.15. Under Condition 3 and using Definition IV.1, A-SubSGDP guarantees

E
[
‖wt − w∗‖2

]
≤ 4η2M

µ2(t+ η)
. (46)

Proof. Using the non-expansiveness of the projection operator ΠW , we have

E
[
‖wt+1 − w∗‖2

]
= E

[∥∥∥ΠW(wt − γt∂̂gi(wt))− w∗
∥∥∥2
]
≤ E

[∥∥∥wt − γt∂̂gi(wt)− w∗∥∥∥2
]
. (47)

Expanding the formula and using the bound M , we have

E
[∥∥∥wt − γt∂̂gi(wt)− w∗∥∥∥2

]
≤ E

[
‖wt − w∗‖2

]
+ γ2

tM − 2γtE
[
〈∂̂gi(wt), wt − w∗〉

]
.

With a probability of at least 1− pt, we find the maximizer ŷti correctly, that is, ŷti = ỹti , resulting

in ∂̂gi(wt) = ∂gi(w
t), and with a probability of at most pt, we get an incorrect ŷti , resulting in

∂̂gi(wt) = ∂[r(w) + fi(ŷ
t
i , w)], denoted by Θt+1. Therefore,

E
[∥∥∥wt − γt∂̂gi(wt)− w∗∥∥∥2

]
≤ E

[
‖wt − w∗‖2

]
+ γ2

tM

− 2γt(1− pt)E
[
〈∂gi(wt), wt − w∗〉

]
− 2γtptE

[
〈Θt+1, wt − w∗〉

]
.

(48)

Note that due to the bound from (44) in Condition 3, we have ‖Θt+1‖2 ≤M . Using the Cauchy–
Schwarz inequality, followed by Jensen’s inequalities, we have

−E
[
〈Θt+1, wt − w∗〉

]
≤ E

[√
‖ −Θt+1‖2

√
‖wt − w∗‖2

]
≤
√
ME

[√
‖wt − w∗‖2

]
≤
√
M
√
E [‖wt − w∗‖2] .

(49)

Given that i is chosen uniformly at random, we have E[∂gi(w
t)] = ∂f(wt). Using the law of iterated

expectations, we have

E
[
〈∂gi(wt), wt − w∗〉

]
= E

[
〈∂f(wt), wt − w∗〉

]
.

Using the strong convexity of the function f , we have

−〈∂f(wt), wt − w∗〉 ≤ f(w∗)− f(wt)− µ

2
‖wt − w∗‖2

28

and

f(w∗)− f(wt) ≤ −µ
2
‖wt − w∗‖2,

resulting in

−E
[
〈∂gi(wt), wt − w∗〉

]
= −E

[
〈∂f(wt), wt − w∗〉

]
≤ −µE

[
‖wt − w∗‖2

]
.

Using the above inequality, (49), (48), and (47), we get

E
[
‖wt+1 − w∗‖2

]
≤ E

[
‖wt − w∗‖2

]
+ γ2

tM

− 2γt(1− pt)µE
[
‖wt − w∗‖2

]
+ 2γtpt

√
M
√
E [‖wt − w∗‖2] .

Substituting the values of pt and γt from Definition IV.1, we have

E
[
‖wt+1 − w∗‖2

]
≤ E

[
‖wt − w∗‖2

]
+

η2M

µ2(t+ η)2

− 2η

(t+ η)

(
1− 1

4
√
t+ η

)
E
[
‖wt − w∗‖2

]
+

√
Mη

2µ(t+ η)1.5

√
E [‖wt − w∗‖2] .

(50)

From Lemma IV.14, we know that the claim (46) holds for t = 1. Using induction on t, along with
(50), we prove that the claim is also correct for all t ≥ 2. Substituting (46) in (50), we get

E
[
‖wt+1 − w∗‖2

]
≤ 4η2M

µ2(t+ η)
+

η2M

µ2(t+ η)2
− 8η3M

(t+ η)2µ2

(
1− 1

4
√
t+ η

)
+

Mη2

µ2(t+ η)2

=
η2M

µ2

{
4

t+ η
+

2− 8η

(t+ η)2
+

2η

(t+ η)2.5

}
≤ 4η2M

µ2(t+ η + 1)
.

The second inequality above follows from confirming that

4

t+ η
+

2− 8η

(t+ η)2
+

2η

(t+ η)2.5
≤ 4

t+ η + 1
,

or, equivalently,

4

t+ η + 1
+

2− 8η

t+ η
+

2η

(t+ η)1.5
≤ 0 ,

which is trivially true for t, η ∈ N+.

In Theorem IV.16, we generalize the analysis of Section 3.2 from [LJSB12] to η 6= 1, taking the
different step size and probability of failure in finding the correct subgradients into account in order
to arrive at a result analogous to Theorem 4 from [SZ13].

Theorem IV.16. Under Condition 3 and using Definition IV.1, A-SubSGDP guarantees that

E
[
f(w̄Tη)− f(w∗)

]
≤ 8η1.5M

3µ(T + η)
. (51)

29

Proof. By rearranging (48) and using E[∂gi(w
t)] = ∂f(wt), we have

2γt(1− pt)E
[
〈∂f(wt), wt − w∗〉

]
≤ E

[
‖wt − w∗‖2

]
− E

[∥∥wt+1 − w∗
∥∥2
]

+ γ2
tM

− 2γtptE
[
〈Θt+1, wt − w∗〉

]
.

(52)

Using the strong convexity of the function f ,

f(wt)− f(w∗) +
µ

2
‖wt − w∗‖2 ≤ 〈∂f(wt), wt − w∗〉.

By combining this inequality and (52),

2γt(1− pt)E
[
f(wt)− f(w∗) +

µ

2
‖wt − w∗‖2

]
≤ E

[
‖wt − w∗‖2

]
− E

[∥∥wt+1 − w∗
∥∥2
]

+ γ2
tM

− 2γtptE
[
〈Θt+1, wt − w∗〉

]
.

After rearranging, we get

E
[
f(wt)− f(w∗)

]
≤ 1

(1− pt)

{(
1

2γt
− µ(1− pt)

2

)
E
[
‖wt − w∗‖2

]
− 1

2γt
E
[∥∥wt+1 − w∗

∥∥2
]

+
γtM

2
− ptE

[
〈Θt+1, wt − w∗〉

]}
≤ 4

3

{(
1

2γt
− µ

2

)
E
[
‖wt − w∗‖2

]
− 1

2γt
E
[∥∥wt+1 − w∗

∥∥2
]

+
γtM

2
− ptE

[
〈Θt+1, wt − w∗〉

]
+
µpt
2

E
[
‖wt − w∗‖2

]}
,

where we use 1
1−pt = 1

1− 1
4
√
t

≤ 4
3 in the second inequality. Using the definition of γt, by multiplying

both sides of the above inequality by P ηt := (t+ 1) . . . (t+ η − 1), and summing over t = 0, . . . , T ,
we get

T∑
t=0

P ηt E
[
f(wt)− f(w∗)

]
≤ 4

3

T∑
t=0

P ηt

{(
µ(t+ η)

2η
− µ

2

)
E
[
‖wt − w∗‖2

]
− µ(t+ η)

2η
E
[∥∥wt+1 − w∗

∥∥2
]

+
γtM

2
− ptE

[
〈Θt+1, wt − w∗〉

]
+
µpt
2

E
[
‖wt − w∗‖2

]}
≤ 4

3

T∑
t=0

{
µP ηt−1

2η
E
[
‖wt − w∗‖2

]
− µP η+1

t

2η
E
[∥∥wt+1 − w∗

∥∥2
]}

+
4

3

T∑
t=0

P ηt

{
γtM

2
− ptE

[
〈Θt+1, wt − w∗〉

]
+
µpt
2

E
[
‖wt − w∗‖2

]}
.

From a telescopic expansion of the first summation on the right-hand side of the second inequality
above,

T∑
t=0

P ηt E
[
f(wt)− f(w∗)

]
≤ 4

3

T∑
t=0

P ηt

{
γtM

2
− ptE

[
〈Θt+1, wt − w∗〉

]
+
µpt
2

E
[
‖wt − w∗‖2

]}
.

30

In the interest of brevity, let

p(t, T, η) =
P ηt

σ(T, η)
and σ(T, η) =

T∑
t=0

P ηt .

So, we have
∑T

t=0 p(t, T, η) = 1. Using induction on T , it is easy to show that

σ(T, η) =
1

η + 1
P ηT .

Consequently,

p(T, T, η) =
η + 1

T + η
. (53)

Using (46) and (49) from Lemma IV.15, and the Definition IV.1 of γt and pt, we have

T∑
t=0

p(t, T, η)E
[
f(wt)− f(w∗)

]
≤ 4

3

T∑
t=0

p(t, T, η)

{
ηM

µ(t+ η)
+

η2M

µ(t+ η)1.5

}

=
4ηM

3µσ(T, η)

T∑
t=0

P η−1
t

{
1 +

η√
t+ η

}

≤
4η(1 +

√
η)M

3µσ(T, η)

T∑
t=0

P η−1
t =

4η(1 +
√
η)M

3µ

σ(T, η − 1)

σ(T, η)

=
4η(1 +

√
η)M

3µ

η

(1 + η)(T + η)
≤ 8η1.5M

3µ(T + η)
.

(54)

Using the convexity of the function f and Jensen’s inequality, we have

E

[
f

(
T∑
t=0

p(t, T, η)wt

)
− f(w∗)

]
≤

T∑
t=0

p(t, T, η)E
[
f(wt)− f(w∗)

]
. (55)

Let w(T, η) =
∑T

t=0 p(t, T, η)wt. Note that

w(T, η) = p(T, T, η)wT +
σ(T − 1, η)

σ(T, η)
w(T − 1, η)

=
η + 1

T + η
wT +

T − 1

T + η
w(T, η)

has the same recursive formula as w̄Tη from (45). Because w(1, η) = w̄1
η = w1, we should have

w(T, η) = w̄Tη for all T > 1. Hence,

w̄Tη =
T∑
t=0

p(t, T, η)wt. (56)

Finally, by combining (56), (55), and (54), we have

E
[
f(w̄Tη)− f(w∗)

]
≤ 8η1.5M

3µ(T + η)
.

31

The corollary below follows easily from Lemma IV.15.

Corollary. Given ε > 0, A-SubSGDP finds a point w ∈ W satisfying E[|f(w)− f(w∗)|] ≤ ε using

O
(

8η1.5M
3µε

)
gradient evaluations.

F. Q-SubSGDP: A Quantum Algorithm for Optimizing the Nonsmooth Objective Function

We may now analyze the complexity of Q-SubSGDP, which is the result of combining A-SubSGDP
and the quantum minimum finding algorithm. Theorem IV.17 is derived from the quantum minimum
finding algorithm [AK99, DH96, AGGW17], which uses amplitude amplification as a subroutine to
find the maximizing element.

Theorem IV.17. Let i be a fixed index and fi be the corresponding function as defined above. Let
F be a bound on the absolute values of fi, that is, F = maxy∈Y |fi(y, w)|, and G be the difference
between the maximum value of the function and the second-largest value of fi. Let U be a unitary
that implements fi and acts on q qubits in order to do so. There exists a quantum algorithm that
returns a (not necessarily unique) point ỹi ∈ arg maxy∈Y fi(y, w), with a probability of at least 1− p,
in

O
(√
|Y| log(F/G) log(1/p)

)
calls to the oracle of fi, with the number of other quantum gates being almost of the same order.

Theorem IV.18. Given ε > 0, Q-SubSGDP finds a point w ∈ W satisfying E[|f(w)− f(w∗)|] ≤ ε
using

O

(
η1.5M

µε

√
|Y| log

(
M

µG

)
log

(
η1.5M

µε

))
queries to the oracles of fi with the number of other quantum gates being almost of the same order.
Here, G is the minimum gap attained by the functions fi throughout the runtime of Q-SubSGDP.
The complexity is O(1

ε log 1
ε) in terms of ε only.

Proof. By multiplying the number of gradient evaluations from Section IV E by the query complexity
found in Theorem IV.17, we obtain a scaling of

O

(
8η1.5M

3µε

√
|Y| log(F/G) log(1/p)

)
,

where F is a bound on the absolute values of fi. Using Lemma IV.1, we have F ≤ 2M
µ . Using the value

of pT from Definition IV.1 for T from Section IV E, we have 1
p ≤

1
pT
≤ 4
√
T + η = 4

√
8η1.5M

3µε + η.

By replacing the bounds for 1/p and F , the result (51) follows.

32

V. NUMERICAL EXPERIMENTS

We compare the optimization of the function f , as defined in (12), with its smooth approximation
fβ , as defined in (16). To exclude the effects of sampler errors and noise, we restrict our experiments
to small instances (i.e., we restrict the size of the sets Y) in order to be able to find the value of the
softmax operator and its gradient exactly.

Also, for simplicity, we restrict our experiments to the case where each fi is a linear function of
w, and r is a quadratic function of w:

fi(y, w) = aTi,y(w − b′i) + bi,y, y ∈ Y, w ∈ RD , (57)

r(w) =
λ

2
‖w‖2, λ ∈ R+, w ∈ RD . (58)

This guarantees the strong convexity of f . Here, the elements y ∈ Y are used as indices for their
corresponding ai,y and bi,y vectors. All coefficient vectors ai,y and bi,y are randomly generated
according to the Cauchy distribution, and all vectors b′i are randomly generated according to a
uniform distribution. The reason we choose the Cauchy distribution for ai,y and bi,y, is its thick tail,
which results in having occasional extreme values for the coefficients. The reason we choose the
uniform distribution for b′i is to avoid the functions fi having a similar minimum, which makes the
problem easy.

In our experiment, we generate a random objective function with D = 10 parameters, that is,
w ∈ R10, where w is initialized to the vector w = (10, 10, . . . , 10)T . We use 200 summand functions
fi, that is, n = 200. We set λ = 2 and Y = {1, 2, . . . , 100}. We generate the vectors b′i from the
uniform distribution over the set [0, 10000]10.

We benchmark four gradient descent schemes: (1) stochastic gradient descent (SGD) applied
to the smooth approximation fβ; (2) stochastic subgradient descent (SubSGD) applied to the
original nonsmooth function f ; (3) stochastic subgradient descent with polynomial-decay averaging
(SubSGDP) [SZ13] applied to the original nonsmooth function f ; and (4) SAGA [DBLJ14] applied
to the smooth approximation fβ.

All methods have two tunable hyperparameters in common: (1) γ0, the initial learning rate,
that is, the step size of gradient descent or its variations; and (2) cγ , a constant indicative of a
schedule on γ through the assignment of γt = γ0

1+tcγ
at iteration t. SGD and SAGA are applied to

the smooth approximation fβ and, as such, the inverse temperature β is a tunable hyperparmeter
in these methods. In contrast, SubSGD and SubSGDP are applied to the original nonsmooth
objective function. SubSGDP also has an additional hyperparmeter η, which is used to define the
polynomial-decay averaging scheme. For each algorithm, we tune the hyperparameters via a grid
search with respect to a quantity we call hyperparameter utility that is explained below. We use the
following values to form a grid in each case:

β ∈ {10−7, 10−5, . . . , 100};
γ0 ∈ {10−7, 10−5, . . . , 100};
cγ ∈ {0} ∪ {10−4, 10−3, . . . , 102}; and

η ∈ {1, 2, . . . , 7}.

We run each algorithm 20 times with different seeds for random number generation, which
randomizes the choice of functions fi for each run, wherein we perform 1000 iterations, and track
the progress on the original nonsmooth objective function f .

33

Algorithm β γ0 cγ η

SGD 10−4 10−2 101 N/A

SubSGD N/A 10−2 101 N/A

SubSGDP N/A 10−3 0 5

SAGA 10−4 10−3 0 N/A

β-10-SAGA 10−7 − 10−6 10−3 0 N/A

TABLE I: The tuned hyperparameter values.

For each algorithm and each hyperparameter setting, we calculate the average objective value
over all 20 runs and all 1000 iterations. For each algorithm we calculate the following quantities:
(1) total descent—the difference between the initial objective value and the best value found over
all 20 trials; (2) absolute ascent—the sum of the values of all ascents between any two consecutive
iterations over all iterations of all 20 trials; and (3) hyperparameter utility—the absolute ascent
divided by the total descent.

For each algorithm, we choose the hyperparameter setting that minimizes the average objective
value over 20 runs and 1000 iterations subject to the constraint that its hyperparameter utility is
less than 0.01. We use this constraint to avoid unstable hyperparameter settings. For instance,
a very large step size might reduce the objective value very quickly in the beginning but fail to
converge to a good solution.

The value of the hyperparameters found by the grid search for each algorithm is reported in
Table I. Other than the four methods discussed above, a final row called β-10-SAGA has been
included, a description of which will follows.

We can see that for SAGA, we have cγ = 0, resulting in a constant step size consistent with
the theoretical proof of convergence of SAGA. For SGD and SubSGD, we obtain cγ = 10, which is
also consistent with the theoretical step sizes of 1/µt and η/µ(t+ η), respectively [SZ13]. Note that by

the contribution of the regularizer r(w) = λ‖w‖2
2 , we have µ ≥ λ = 1. For SubSGDP, we see that

the polynomial-decay averaging manages to work with a constant step size, whereas to prove its
theoretical convergences, a step size of η/µ(t+ η) is used.

We see that SGD and SubSGD perform poorly (at least for stable choices of hyperparameters,
e.g., their having small step sizes). SubSGDP results in a great improvement, yet SAGA further
outperforms it. This is despite the fact that SAGA optimizes the original nonsmooth function in
O(1

ε log 1
ε) once applied to the smooth approximation fβ , whereas SubSGDP converges theoretically

in the provably optimal rate of O(1
ε).

We observe that the objective function value is around 8× 106. After checking the values of w,
we see that r(w) ≈ 105. Hence 1

n

∑
max fi ≈ max fi ≈ 8× 106. Therefore, at β = 10−4, we have

βmax fi ≈ 800. In this regime, the Boltzmann distribution from which we need to sample is very
close to the delta function concentrated on the ground states.

In an alternative SAGA experiment, called β-10-SAGA, we have β start from 10−7 and in every
10 iterations increase it by 10−8, resulting in a final value of 1.1× 10−6. Its performance is slightly
worse than that of SAGA, although it is still better than that of SubSGDP. However, βmax fi
starts from around 0.8 and approaches 8 in the end, which is more suitable for a Gibbs sampler.

34

0 200 400 600 800 1000
Iterations

8760000

8780000

8800000

8820000

8840000

Ob
je

ct
iv

e
Va

lu
e

SGD
SubSGD
SubSGDP
SAGA
ß-10-SAGA

FIG. 1: The average objective value of five algorithms, SGD, SubSGD, SubSGDP, SAGA, and β-10-SAGA, over 20 runs and
1000 iterations. For each iteration the average over 20 runs is shown using dark lines, alongside the standard deviation, shown

using shaded regions. We see that SubSGDP is highly effective in improving SubSGD. We also see that SAGA is highly
effective in improving SGD, and it even outperforms SubSGDP, despite SubSGDP being provably optimal. β-10-SAGA

performs slightly worse, but is more suitable for Gibbs samplers.

VI. OBJECTIVE FUNCTIONS FOR STRUCTURED PREDICTION

A. S3VM

In this section, we use ideas from Section III A to solve a smooth approximation of SSVMs. We
first observe that the constrained optimization problem SSVM as presented in (3) can be rewritten
[YJ09] as the minimization of the objective function

fSSVM(w) =
1

2
λ‖w‖2 +

∑
(x,y)∈S

max
y′

{
∆(y′, y) + wT

[
Φ(x, y′)− Φ(x, y)

]}
, (59)

where λ is the regularization parameter for which we have λ = 1
C with C being the parameter

defined in (3). This objective function is a convex upper bound on the risk minimization problem

min
w

∑
(x,y)∈S

∆(arg max
y′

(
wTΦ(x, y′)

)
, y) , (60)

as we saw in Section VI. Note that Eq. (59) can easily be rewritten in the form of the function
defined in (12). The smoothing of (59) results in the function

fS3VM(w;β) =
1

2
λ‖w‖2 +

∑
(x,y)∈S

max
y′

β
{

∆(y′, y) + wT
[
Φ(x, y′)− Φ(x, y)

]}
, (61)

which is a smooth and strongly convex upper bound on the objective function of (60). We use
S3VM as an abbreviation for smooth structured support vector machine. As a matter of fact, we
rediscover the so-called softmax margin objective function [GS10b] for structured prediction,

fSMM(w) =
1

n

∑
x,y

max
y′

β
[
∆(y′, y) + s(x, y′, w)− s(x, y, w)

]
, (62)

35

which is an upper bound on fMM(w) from (9). For the gradient of (61), from (18) we have

∇wfS3VM(w;β) = λw +
∑

(x,y)∈S

EY (Φ(x, Y))− Φ(x, y) , (63)

where Y is a random variable with the probability distribution

pB+∆(y′|x;w, β) ∝ exp
(
β
[
∆(y′, y) + wTΦ(x, y′)

])
, (x, y) ∈ S. (64)

One method of calculating Eq. (63) is to use a Monte Carlo estimation by generating samples from
the distribution (64).

Smoothing of the maximum-margin problem is not a new idea. This approach was studied for
speech recognition tasks [SS07]. In [HU10], the authors also considered the same smoothing approach
to SSVMs and gave an approximate inference method based on message passing algorithms. In
[GS10a] and [VLZ11], the authors compared S3VM with several other structured prediction objective
functions and found S3VM and loss-inspired conditional log-likelihood outperformed the rest. Loss-
inspired conditional log-likelihood [VLZ11] was introduced as an inexpensive modification to the
conditional log-likelihood objective function and later reinvented in [NBJ+16] as reward augmented
maximum likelihood, but with additional theoretical analysis connecting it to entropy-regularized
reinforcement learning.

B. Conditional Log-Likelihood

One approach to obtaining an objective function for structured prediction is to use the conditional
log-likelihood

L(w) = −
∑

(x,y)∈S

log p(y|x;w) , (65)

where p(y|x;w) is a conditional probability density function parameterized by a tunable parameter
vector w. One way to define the probability distribution function p is to use the scoring function
s(x, y, w) according to the equation

pB(y|x;w, β) =
exp(βs(x, y, w))

ZB(x;w, β)
, (x, y) ∈ X × Y , (66)

where β is a non-tunable parameter separate from w, and ZB(x;w, β) is the normalizing constant.
The conditional log-likelihood (CL) objective function is

fCL(w) = −
∑

(x,y)∈S

log pB(y|x;w, β) = −β
∑

(x,y)∈S

[
max
y′∈Y

βs(x, y′, w)− s(x, y, w)

]
. (67)

To compute the gradient of this objective function, we can use (18) for the gradient of the softmax
operator maxβ.

One weakness of this objective function is that it does not take the task-specific loss function
∆ into account. If the model satisfies some regularity conditions and the size of the dataset is
large, this would not be a problem because of the asymptotic consistency and efficiency of the

36

maximum-likelihood method [NM94]. However, in practice, these conditions are usually not satisfied,
so it might be possible to find a better objective function to obtain a solution. S3VM is an example
of such a function. We consider other alternatives in the next sections.

There is an interesting connection between the objective function (67) and the principle of
maximum entropy. In [BPP96], the authors prove the following. Consider all the conditional
probability distributions over the output y given an input x. Among all such distributions, the
one that satisfies a specific set of constraints to match the empirical distribution of the data, while
simultaneously maximizing the entropy, has a probability function of the form pB. Furthermore, it
is the same distribution that maximizes the conditional log-likelihood fCL of (67).

When the scoring function s corresponds to the negative energy function of an undirected
graphical model, the model trained with the conditional log-likelihood objective function (67) is
called a conditional random field (CRF) [LMP01], an important model used in structured prediction.
It has found applications in various areas, including computer vision [HZCP04, KH04, Li09], natural
language processing [SP03, ML03], and bioinformatics [BCHP07, DVP+07].

C. Loss-Targeted Conditional Log-Likelihood

Instead of using conditional log-likelihood, we may consider a source and a target probability
density function p and q and minimize a notion of distance between them [VLZ11, NBJ+16]. The
conditional log-likelihood objective function (65) can actually be driven with this approach.

Example. Let us use Kullback–Leibler (KL) divergence as our notion of distance. For p, we use
pB as defined in (66). For the target distribution, we may simply use the Kronecker delta between
the predicted label y′ and the true label y:

q(y′|x) = δy′,y, (x, y) ∈ S . (68)

The structured prediction objective function is then

∑
(x,y)∈S

∑
y′∈Y

δy,y′ log
δy,y′

pB(y′|x;w)
= −

∑
(x,y)∈S

log pB(y|x;w) = L(w) , (69)

which was studied in the previous section.

As discussed previously the conditional log-likelihood objective function fCL does not take the
task-specific loss ∆ into account. One way to resolve this is to use a target distribution q that
depends on ∆. In [VLZ11, NBJ+16], the authors propose using the target distribution

q∆(y′|x) ∝ exp(−µ∆(y′, y)), (x, y) ∈ S , (70)

where µ ∈ R is a parameter adjusting the spread of the distribution. The KL distance between pB
and q∆, ∑

y′∈Y

[
q∆(y′|x) log q∆(y′|x)− q∆(y′|x) log pB(y′|x;w)

]
,

37

has its first term q∆(y′|x) log q∆(y′|x) independent of w, so we can ignore it and obtain the loss-
targeted conditional log-likelihood (LCL) objective function

fLCL(w) =
∑

(x,y)∈S

∑
y′∈Y

[
−q∆(y′|x) log pB(y′|x;w, β)

]
(71)

=
∑

(x,y)∈S

∑
y′∈Y

q∆(y′|x)
[
logZB(x;w, β)− βs(x, y′, w)

]

=
∑

(x,y)∈S

logZB(x;w, β)−
∑
y′∈Y

βq∆(y′|x)s(x, y′, w)

= β

∑
(x,y)∈S

{
max
y′

βs(x, y′, w)− EY∆
(s(x, Y∆, w))

}
,

where Y∆ is a random variable with the probability function q∆.
To find the gradient of fLCL, for the maxy′

βs(x, y′, w) terms we can use the gradient formula of
the softmax operator from (18), and for the EY∆

(s(x, Y∆, w)), since the distribution q∆ does not
depend on w, we have

∇wEY∆
(s(x, Y∆, w)) = EY∆

(∇ws(x, Y∆, w)) . (72)

Based on the particular formulae selected for the scoring function s and the loss function ∆ (see
Section II B), we might be able to use combinatorial formulae to compute (72) exactly. Another
approach could be Monte Carlo estimation by sampling from the distribution q∆. This could be an
easy task, depending on the choice of ∆. For example, when the labels are binary vectors and ∆
is the Hamming distance, we can group together all the values of the labels that have the same
Hamming distance from the true label. We can then find a combinatorial formula for the number
of values in each group, and determine the probability of each group exactly. In order to generate
samples, we choose one group randomly according to its probability and then choose one of the
values in the group uniformly at random.

D. The Jensen Risk Bound

The last approach we discuss for incorporating the task-specific loss ∆ is using the Earth mover’s
distance (EMD). An exact definition, and a linear programming formulation to compute the EMD
can be found in [RTG98]. In this approach, the EMD is used (instead of KL distance) to measure
the distance between two source and target distributions p and q, and to try to minimize this
distance.

For p, we choose the probability density function pB as in (66) and let q be defined as in (68).
With these choices, the objective function is

fRisk(w) =
1

nβ

∑
(x,y)∈S

∑
y′∈Y

∆(y′, y)pB(y′|x;w, β) =
1

nβ

∑
(x,y)∈S

EYB (∆(YB, y)) , (73)

where YB is a random variable with the probability density function pB. This objective function is
called risk because of its close relationship with the empirical risk as defined in (7).

38

The objective function fRisk incorporates the task specific loss ∆; however, it is non-convex
[GS10b] and the computation of its gradient,

∇wfRisk(w) =
1

n

∑
(x,y)∈S

EYB (∆(YB, y)∇ws(YB, x, w))

− 1

n

∑
(x,y)∈S

EYB (∆(YB, y))EYB (∇ws(YB, x, w)) ,

is difficult, because of the term EYB (∆(Y, y)∇ws(YB, x, w)) [GS10b]. For example, a Monte Carlo
estimation of EYB (∆(YB, y)∇ws(YB, x, w)) would have much greater variance for the same number
of samples, compared to the estimation of EYB (∇ws(YB, x, w)), which is what we need in most
objective functions, for example, fCL, fLCL, and fS3VM.

A solution to this issue is provided in [GS10a], where the authors have introduced the new
objective function fJRB, called the Jensen risk bound, which is an upper bound on fRisk, and has
gradients that are easier to calculate:

fJRB(w) =
1

nβ

∑
(x,y)∈S

logEYB (β exp(∆(YB, y))) (74)

To see why fJRB is an upper bound on fRisk, note that

EYB (∆(YB, y)) =
1

β
log exp (β(EYB (∆(YB, y)))

≤ 1

β
log (EYB (exp(β∆(YB, y)))) ,

by convexity of the exponential function and Jensen’s inequality.
For the gradient formula for fJRB, we have

∇wfJRB(w) =
1

nβ

∑
(x,y)∈S

EYB+∆
(∇ws(x, YB+∆, w))− EYB (∇ws(x, YB, w)) ,

where YB+∆ is a random variable with the probability density function

pB+∆(y′|x;w, β) ∝ exp(β[∆(y′, y) + s(x, y′, w)]), y′ ∈ Y, (x, y) ∈ S , (75)

and YB is a random variable with the probability function pB as defined in (66).
Although fJRB has easier gradients to calculate, it is still a non-convex function. The EMD used

here gives rise to a new interpretation of the well-known objective function of risk, which was used
successfully for a long period of time by the speech recognition and natural language processing
communities [KHK00, PW02, GS10a]. In [GS10a], the authors have introduced the Jensen risk
bound objective of (74), as an easier-to-optimize upper bound on the risk objective function.

VII. IMAGE TAGGING AS A STRUCTURED-PREDICTION TASK

Recall the notation used in Section II A. In our image tagging task, let X be the set of all possible
images, and Y is the set of all possible labels. The labels are `-dimensional binary vectors. In other

39

words, Y ⊆ {−1, 1}`. Each dimension of y denotes the presence or absence of a tag in the image
(e.g., “cat”, “dog”, “nature”).

We would like to find the feature function Φ(x, y, w0) with parameter w0. Let Φ0 : X ×W0 → Rη
be a feature function, where the first argument from X is an image, the second argument from W0 is
a parameter, and the output is a real vector with η ∈ N dimensions. The function Φ0(x,w0) serves
as a base feature function in the construction of Φ(x, y, w0). The function Φ0(x,w0) can be any
function. In our experiments, we use a convolutional neural network (CNN) as a feature extractor
for this purpose, with w0 denoting its weights.

One way to define Φ based on Φ0 is as follows: we design Φ0 (i.e., the CNN) such that the
dimension of its output is identical to the size of the labels: η = `. Let “triu” denote the vectorized
upper triangle of its square matrix argument. We then define

Φ(x, y, w0) =

 triu(yyT)

Φ0(x,w0) ◦ y
y

 , (76)

where ◦ is the element-wise product. Note that Φ0(x,w0) ◦ y is well-defined because η = ` and the
two vectors Φ0(x,w0) and y have identical dimensions.

The result is Φ(x, y, w0) ∈ Rd for some d ∈ N. Let w ∈ Rd be the parameter vector of our
structured-prediction model. We then define the scoring function s as

s(x, y, w) = wTΦ(x, y, w0) =
(
θT1 θT2 θT3

)
Φ(x, y, w0) (77)

= θT1 triu(yyT) + θT2 [Φ0(x,w0) ◦ y] + θT3 y .

One can then interpret θ1 as control parameters on the relationship between pairs of labels yi
and yj . The parameter vector θ2 controls the effect of the features extracted from the CNN. The
parameter vector θ3 controls the bias of the values of yi, as some tags are less likely to be present
and some are more likely. Note that the formula s(x, y, w) in (77) is quadratic in y.

We choose the function ∆ to be the Hamming distance

∆(y′, y) = Hamming(y′, y) (78)

for two reasons. Firstly, the error in the predictions made in image tagging is also calculated using
the Hamming distance between the true label and the predicted label. Secondly, the Hamming
distance is a linear function of y′, and therefore ∆(y′, y) + s(x, y′, w) remains quadratic in y′. This
reduces the inference step of the optimization of fS3VM and fJRB (i.e., sampling from the distribution
pB+∆ of (64) and (75)) to sampling from an Ising model.

A. Numerical Results

We use the MIRFLICKR dataset [HL08], which consists of 25,000 images and 38 tags. This
dataset consists of an extended tag set with more than 1000 words. Since the sampling step for the
Monte Carlo estimation of the gradient of the objective functions is very slow on CPUs, we restrict
the tags to the smaller set of 38. We randomly selected 20,000 images for the training set, 2500
images for the validation set, and the remaining 2500 images for the test set.

40

Model Validation Error Test Error γ λ β βeff

baseline 2.6844 2.7052 N/A N/A N/A N/A

baseline + S3VM 2.6568 2.69 10−7 0.0 31 [60.372, 133.0482]

baseline + CL 2.6696 2.6996 10−6 10−6 31 [53.0406, 118.1979]

baseline + JRB 2.658 2.6956 10−7 10−6 31 [55.4559, 122.7675]

baseline + FC 2.7236 2.7656 10−2 0.0 N/A N/A

TABLE II: Image tagging results. The baseline architecture is that of AlexNet. The three subsequent lines report the
performance of extensions of the baseline with an Ising model trained using different objective functions. The last row is an

extension of the baseline with a single feedforward fully connected layer with sigmoid activations and the binary cross entropy
objective.

We train a pre-trained AlexNet [KSH12], a convolutional neural network, on the training data,
to predict the tags. We train AlexNet using the binary cross entropy objective function between its
output layer and the true labels. We call this model a baseline in what follows. We fix the baseline
and feed its output to an Ising model which acts as a denoiser. We then train the weights of the
Ising model with three different objective functions, namely fCL, fS3VM, and fJRB. This is inspired
by [CSYU15], wherein the output of an AlexNet network is fed to a CRF in a very similar fashion.
The architecture of the model is shown in Figure 2.

In the training mode, we use the standard stochastic gradient descent algorithm, with a parameter
λ adjusting the L2 regularizer of λ‖w‖2/2 that is added to the objective functions, and a parameter
γ as the learning rate, which is kept constant during the training. We consider four training epochs,
where, in each epoch, we go through each data point of the training data exactly once, in a random
order. In this experiment, we use single-spin flip Gibbs sampling at a constant inverse temperature
β as our sampling subroutine to compute a Monte Carlo estimation of the objective function’s
gradient. Due to our choice of using only a subset of tags to train and test over, our Ising model
instances consist of 38 variables and a fully connected architecture. For each instance, we perform
200 sweeps and collect 200 samples.

So, in total, we have three hyperparameters, namely γ, λ, and β. We tune the hyperparameters
by performing a grid search over the values

γ = {10−8, 10−7, 10−6, 10−5}, λ = {0.0, 10−6, 10−4, 10−2}, and β = {3−1, 30, 31, 32} .

A last architecture considered is that of an extension of the baseline with a fully connected

. . .x

Neural Network

w1;2

w2;3

w3;4

w1;4 ŷ

Fully

Connected

Ising Model

Ground

State

Image Tag Prediction

FIG. 2: Image tagging architecture. The image x is fed to a neural network to extract features. The features then are passed
to an Ising model the ground state of which determines the prediction.

41

(a) Test image 7520 (b) Test image 10177 (c) Test image 21851

FIG. 3: Sample tags generated by the different models. In Figure 3a, Figure 3b, and Figure 3c, we see that S3VM has
respectively decreased, increased, and did not affect the error, compared to the baseline.

image number 7520 10177 21851

true labels plant life, sky, structures, tree night, sky, structures, transport night, sky, structures

baseline people, plant life, sky, structures, tree night, plant life, sky, structures, sunset, transport, tree indoor, male, people, structures

baseline+S3VM plant life, sky, structures, tree night, plant life, sky, structures, sunset, tree indoor, male, people, structures

baseline+CL people, plant life, sky, structures, tree night, plant life, sky, structures, sunset, transport, tree male, people, structures

baseline+JRB plant life, sky, structures, tree night, plant life, sky, structures, sunset, tree indoor, male, people, structures

baseline+FC male, people, plant life, sky, structures, tree night, plant life, sky, structures, sunset, transport, tree male, people, sky, structures

feedforward layer with sigmoid activations. This model has been added in order to compare the
extensions of the baseline with undirected architectures (e.g., the Ising model) versus a feedforward
layer using a similar number of parameters. The Ising model has a fully connected graph with(

38
2

)
+ 38 = 741 parameters and we use a fully connected feedforward layer with 38 nodes, which

amounts to 382 + 38 = 1482 parameters. We use the Adam algorithm for optimization [KB14]
implemented in the PyTorch library [PGC+17] with 300 epochs. We tune the learning rate parameter
γ using a gridsearch over the values

γ = {10−5, 10−4, 10−3, 10−2, 10−1},

while all other hyperparameters of the Adam optimization algorithm are left at their default values
(β1 = 0.9, β2 = 0.999).

In Table II, we summarize the performance of the various methods and values of tuned hyperpa-
rameters. The reported error is the average Hamming distance between the predicted labels and the
true labels in terms of the number of bits. We observe that all three extensions of the baseline with
an Ising model improve the baseline, with the S3VM objective function resulting in the greatest
improvement.

We observe that the values of λ in all cases are either 0 or very small. However, this might be an
artifact of having small numbers of parameters in our model (

(
38
2

)
+ 38 = 741), making the model

immune to over-fitting.
In the final column of Table II, we report the range of the effective thermodynamic β denoted by

βeff for each method. The effective β is the product of the nominal value β and the absolute value

42

of the ground state energy of the Ising model over different images. The interval reported in this
table is the range of βeff over the images in the test set.

In Figure 3, we see three examples from the test set. Finally, we wish to remark that we
would have needed to solve much larger problems and perform many more sweeps of Monte Carlo
simulations had we used the complete set of tags. The fully connected architecture is not imposed
by the problem we are solving. The use of much sparser connectivity graphs could result in viable
feature extractors as well. These are future areas of development that can be explored using
high-performance computing platforms.

VIII. CONCLUSION

In this paper, we introduced quantum algorithms for solving the min-max optimization problem
that appears in machine learning applications. We first studied a variant of SAGA (which we
call A-SAGA) that takes into account an additive error on the calculation of gradients. This has
allowed us to use a quantum Gibbs sampler as a subroutine of A-SAGA to provide estimations
of the gradients and optimize the smooth approximation of the min-max problem. We called the
conjunction of A-SAGA with the quantum Gibbs sampler Q-SAGA.

We have shown that A-SAGA can give an approximation of the solution of the smooth approx-
imation of the original min-max problem in O(log 1

ε) gradient evaluations, provided the additive
error is in O(ε). This scaling is, in fact, optimal [DBLJ14, SLRB17]. We then used A-SAGA to
solve the original min-max problem in O(1

ε log 1
ε) gradient evaluations. We remark that the best

algorithms [SZ13, Nes05] for solving the original min-max problem use O(1
ε) gradient evaluations.

This is the case if the gradients are calculated exactly. We conclude that in the presence of additive
errors in estimating the gradients, our results are close to optimal.

The quantum algorithm Q-SAGA solves the smooth approximation of the original min-max
problem in O(1

ε log2 1
ε) queries to the associated quantum oracles with the number of other quantum

gates being almost of the same order. Despite an almost-linear scaling in terms of ε, this quantum
algorithm provides a speedup in terms of other parameters indicative of the size of the problem.
For example, where the problem is a model for structured prediction using an SSVM, the scaling
is Õ(1

εD
3.5
√
|Y|), where Y is the set of all possible predictions and D is the number of tunable

parameters. We also analyzed the usage of Q-SAGA, not to solve the smooth prediction problem,
but to approximate a solution to the original min-max problem. In order to do this, the temperature
has to be assigned proportional to ε. In total, this results in Õ(1

ε3.5
D5.5

√
|Y|) queries to the oracles

of fi.

Secondly, we studied the variant A-SubSGDP of the gradient descent scheme with polynomial-
decay averaging (SubSGDP) [SZ13] that also takes into account incorrect calculations of the
subgradients as long as they are bounded. This allows the quantum minimum finding algorithm
of [DH96] to find the subgradients used in subgradient descent efficiently while leaving room for a
small probability of failure. The combination of A-SubSGDP and the quantum minimum finding
algorithm results in the quantum algorithm Q-SubSGDP for solving the original (nonsmooth)
min-max optimization problem without resorting to smooth approximations. We showed that
Q-SubSGDP solves the original min-max problem in Õ(1

ε

√
|Y|), which makes it a more suitable

algorithm for solving the original min-max problem if robust inference from smooth structured
prediction models is not of significant interest.

Therefore, unlike in classical convex optimization, the quantum algorithm for nonsmooth op-

43

timization shows better scaling than the quantum algorithm for smooth optimization when the
goal is to solve the original min-max problem with an accuracy of ε. We conclude that, while in
classical computation smooth approximation and smooth optimization techniques are desirable for
the optimization of nonsmooth objective functions, in the world of quantum algorithms the trade-off
between the computational advantage of working with smooth functions and the approximation error
between the original nonsmooth and approximate smooth objective functions is more pronounced.

Finally, we have provided results from several numerical experiments. In particular, we compared
the performance of SGD in two cases: with all sampling subroutines performed at a constant
temperature, and with the temperature decreasing across iterations according to a schedule. We
observed that the scheduled temperature slightly improves the performance of SGD. We believe
that studying the temperature schedule would be an interesting avenue of research. In particular, it
would be beneficial to gain an understanding of the best practices in scheduling temperature during
SGD. It would also be interesting to provide a theoretical analysis of the effect of the temperature
schedule in SGD. As we have seen in our experiments, using a temperature schedule seems not
to be consistent with SAGA since the cache of old gradients then comes from other temperatures.
Another avenue of future research would be to adapt or modify SAGA so as to overcome this caveat.

Our successful image tagging experiments used only 38 English words as candidate tags. The
MIRFLICKR dataset provides a thousand English words as candidate tags, but conducting an
experiment of this size was not feasible with the computational resources available to us. Our goal
is to pursue efficient Gibbs sampling approaches in quantum and high-performance computation in
order to achieve similar results in larger image tagging tasks. In fact, our work proposes a general
approach for quantum machine learning using a quantum Gibbs sampler. In this approach, the
network architecture consists of a leading directed neural network serving as a feature extractor, and
a trailing undirected neural network responsible for smooth prediction based on the feature vectors.

IX. ACKNOWLEDGEMENT

The authors thank Mark Schmidt, who motivated our initiation of this project and provided
technical feedback throughout. We further thank Ronald de Wolf, Matthias Troyer, Joran van Apel-
doorn, András Gilyén, Austin Roberts, and Reza Babanezhad for useful technical discussions, and
Marko Bucyk for helpful comments and for reviewing and editing the manuscript. This project was
fully funded by 1QBit. P. R. further acknowledges the support of the government of Ontario and
Innovation, Science and Economic Development Canada.

[ABLZ12] Tameem Albash, Sergio Boixo, Daniel A Lidar, and Paolo Zanardi. Quantum adiabatic markovian
master equations. New Journal of Physics, 14(12):123016, 2012.

[AFGG12] JE Avron, M Fraas, GM Graf, and P Grech. Adiabatic theorems for generators of contracting
evolutions. Communications in mathematical physics, 314(1):163–191, 2012.

[AG18] Joran van Apeldoorn and András Gilyén. Improvements in quantum sdp-solving with applications.
arXiv preprint arXiv:1804.05058, 2018.

[AGGW17] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Quantum sdp-solvers:
Better upper and lower bounds. In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual
Symposium on, pages 403–414. IEEE, 2017.

44

[AK99] Ashish Ahuja and Sanjiv Kapoor. A quantum algorithm for finding the maximum. arXiv preprint
quant-ph/9911082, 1999.

[ATH03] Yasemin Altun, Ioannis Tsochantaridis, and Thomas Hofmann. Hidden markov support vector
machines. In Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages
3–10, 2003.

[BCHP07] Axel Bernal, Koby Crammer, Artemis Hatzigeorgiou, and Fernando Pereira. Global discriminative
learning for higher-accuracy computational gene prediction. PLoS computational biology, 3(3):e54, 2007.

[BCTM05] Peter L Bartlett, Michael Collins, Ben Taskar, and David A McAllester. Exponentiated gradient
algorithms for large-margin structured classification. In Advances in neural information processing
systems, pages 113–120, 2005.

[BDRF16] S Bachmann, W De Roeck, and Martin Fraas. The adiabatic theorem for many-body quantum
systems. Preprint, 2016.

[BHMT02] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification
and estimation. Contemporary Mathematics, 305:53–74, 2002.

[BK13] Wei Bi and James Kwok. Efficient multi-label classification with many labels. In International
Conference on Machine Learning, pages 405–413, 2013.

[BKL+17] F. G. S. L. Brandão, A. Kalev, T. Li, C. Yen-Yu Lin, K. M. Svore, and X. Wu. Quantum sdp solvers:
Large speed-ups, optimality, and applications to quantum learning. arXiv preprint arXiv:1710.02581,
2017.

[BPP96] Adam L Berger, Vincent J Della Pietra, and Stephen A Della Pietra. A maximum entropy approach
to natural language processing. Computational linguistics, 22(1):39–71, 1996.

[BS17] Fernando GSL Brandao and Krysta M Svore. Quantum speed-ups for solving semidefinite programs.
In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual Symposium on, pages 415–426.
IEEE, 2017.

[BT12] Amir Beck and Marc Teboulle. Smoothing and first order methods: A unified framework. SIAM
Journal on Optimization, 22(2):557–580, 2012.

[CGK+08] Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, and Peter L Bartlett. Exponentiated
gradient algorithms for conditional random fields and max-margin markov networks. Journal of Machine
Learning Research, 9(Aug):1775–1822, 2008.

[CLG+16] Daniel Crawford, Anna Levit, Navid Ghadermarzy, Jaspreet S Oberoi, and Pooya Ronagh.
Reinforcement learning using quantum boltzmann machines. arXiv preprint arXiv:1612.05695, 2016.

[Col02] Michael Collins. Discriminative training methods for hidden markov models: Theory and experiments
with perceptron algorithms. In Proceedings of the ACL-02 conference on Empirical methods in natural
language processing-Volume 10, pages 1–8. Association for Computational Linguistics, 2002.

[CS16] Anirban Narayan Chowdhury and Rolando D Somma. Quantum algorithms for gibbs sampling and
hitting-time estimation. arXiv preprint arXiv:1603.02940, 2016.

[CSYU15] Liang-Chieh Chen, Alexander Schwing, Alan Yuille, and Raquel Urtasun. Learning deep structured
models. In International Conference on Machine Learning, pages 1785–1794, 2015.

[DBLJ14] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in neural information processing
systems, pages 1646–1654, 2014.

[DH96] Christoph Durr and Peter Hoyer. A quantum algorithm for finding the minimum. arXiv preprint
quant-ph/9607014, 1996.

[DVP+07] David DeCaprio, Jade P Vinson, Matthew D Pearson, Philip Montgomery, Matthew Doherty,
and James E Galagan. Conrad: gene prediction using conditional random fields. Genome research,
17(9):000–000, 2007.

[FISS03] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An efficient boosting algorithm for
combining preferences. Journal of machine learning research, 4(Nov):933–969, 2003.

[GP17] Bolin Gao and Lacra Pavel. On the properties of the softmax function with application in game
theory and reinforcement learning. arXiv preprint arXiv:1704.00805, 2017.

[GS10a] Kevin Gimpel and Noah A Smith. Softmax-margin crfs: Training log-linear models with cost

45

functions. In Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pages 733–736. Association for Computational
Linguistics, 2010.

[GS10b] Kevin Gimpel and Noah A Smith. Softmax-margin training for structured log-linear models. 2010.
[HL08] Mark J Huiskes and Michael S Lew. The mir flickr retrieval evaluation. In Proceedings of the 1st

ACM international conference on Multimedia information retrieval, pages 39–43. ACM, 2008.
[HLPR18] Nicholas JA Harvey, Christopher Liaw, Yaniv Plan, and Sikander Randhawa. Tight analyses for

non-smooth stochastic gradient descent. arXiv preprint arXiv:1812.05217, 2018.
[HU10] Tamir Hazan and Raquel Urtasun. A primal-dual message-passing algorithm for approximated large

scale structured prediction. In Advances in Neural Information Processing Systems, pages 838–846, 2010.
[HZCP04] Xuming He, Richard S Zemel, and Miguel Á Carreira-Perpiñán. Multiscale conditional random

fields for image labeling. In Computer vision and pattern recognition, 2004. CVPR 2004. Proceedings of
the 2004 IEEE computer society conference on, volume 2, pages II–II. IEEE, 2004.

[JFY09] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane training of structural
svms. Machine Learning, 77(1):27–59, 2009.

[Joa06] Thorsten Joachims. Training linear svms in linear time. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 217–226. ACM, 2006.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[KB16] Michael J Kastoryano and Fernando GSL Brandao. Quantum gibbs samplers: the commuting case.
Communications in Mathematical Physics, 344(3):915–957, 2016.

[KH04] Sanjiv Kumar and Martial Hebert. Discriminative fields for modeling spatial dependencies in natural
images. In Advances in neural information processing systems, pages 1531–1538, 2004.

[KHK00] Janez Kaiser, Bogomir Horvat, and Zdravko Kacic. A novel loss function for the overall risk
criterion based discriminative training of hmm models. In Sixth International Conference on Spoken
Language Processing, 2000.

[KR17] Sahar Karimi and Pooya Ronagh. A subgradient approach for constrained binary optimization via
quantum adiabatic evolution. Quantum Information Processing, 16(8):185, 2017.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in neural information processing systems, pages 1097–1105,
2012.

[LCG+17] Anna Levit, Daniel Crawford, Navid Ghadermarzy, Jaspreet S Oberoi, Ehsan Zahedinejad, and
Pooya Ronagh. Free energy-based reinforcement learning using a quantum processor. arXiv preprint
arXiv:1706.00074, 2017.

[Li09] Stan Z Li. Markov random field modeling in image analysis. Springer Science & Business Media, 2009.
[LJJSP12] Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-coordinate

frank-wolfe optimization for structural svms. arXiv preprint arXiv:1207.4747, 2012.
[LJSB12] Simon Lacoste-Julien, Mark Schmidt, and Francis Bach. A simpler approach to obtaining an o

(1/t) convergence rate for the projected stochastic subgradient method. arXiv preprint arXiv:1212.2002,
2012.

[LM01] Yuh-Jye Lee and Olvi L Mangasarian. Ssvm: A smooth support vector machine for classification.
Computational optimization and Applications, 20(1):5–22, 2001.

[LMP01] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. 2001.

[LSV08] Quoc V Le, Alex J Smola, and Svn Vishwanathan. Bundle methods for machine learning. In
Advances in neural information processing systems, pages 1377–1384, 2008.

[ML03] Andrew McCallum and Wei Li. Early results for named entity recognition with conditional random
fields, feature induction and web-enhanced lexicons. In Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4, pages 188–191. Association for Computational
Linguistics, 2003.

[MTT+17] Satoshi Matsubara, Hirotaka Tamura, Motomu Takatsu, Danny Yoo, Behraz Vatankhahghadim,

46

Hironobu Yamasaki, Toshiyuki Miyazawa, Sanroku Tsukamoto, Yasuhiro Watanabe, Kazuya Takemoto,
et al. Ising-model optimizer with parallel-trial bit-sieve engine. In Conference on Complex, Intelligent,
and Software Intensive Systems, pages 432–438. Springer, 2017.

[NBJ+16] Mohammad Norouzi, Samy Bengio, Navdeep Jaitly, Mike Schuster, Yonghui Wu, Dale Schuurmans,
et al. Reward augmented maximum likelihood for neural structured prediction. In Advances In Neural
Information Processing Systems, pages 1723–1731, 2016.

[Nes05] Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical programming, 103(1):127–
152, 2005.

[Nes13] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

[Ng10] A Ng. Support vector machines (part v of cs229 machine learning course materials). 2010.
[NM94] Whitney K Newey and Daniel McFadden. Large sample estimation and hypothesis testing. Handbook

of econometrics, 4:2111–2245, 1994.
[NS16] Frank Nielsen and Ke Sun. Guaranteed bounds on information-theoretic measures of univariate

mixtures using piecewise log-sum-exp inequalities. Entropy, 18(12):442, 2016.
[OHY17] Takuya Okuyama, Masato Hayashi, and Masanao Yamaoka. An ising computer based on simulated

quantum annealing by path integral monte carlo method. In Rebooting Computing (ICRC), 2017 IEEE
International Conference on, pages 1–6. IEEE, 2017.

[PGC+17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch.
2017.

[PW02] Daniel Povey and Philip C Woodland. Minimum phone error and i-smoothing for improved
discriminative training. In Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International
Conference on, volume 1, pages I–105. IEEE, 2002.

[PW09] David Poulin and Pawel Wocjan. Sampling from the thermal quantum gibbs state and evaluating
partition functions with a quantum computer. Physical review letters, 103(22):220502, 2009.

[RM85] Herbert Robbins and Sutton Monro. A stochastic approximation method. In Herbert Robbins
Selected Papers, pages 102–109. Springer, 1985.

[RSS+12] Alexander Rakhlin, Ohad Shamir, Karthik Sridharan, et al. Making gradient descent optimal for
strongly convex stochastic optimization. In ICML, volume 12, pages 1571–1578. Citeseer, 2012.

[RTG98] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. A metric for distributions with applications
to image databases. In Computer Vision, 1998. Sixth International Conference on, pages 59–66. IEEE,
1998.

[RWI16] Pooya Ronagh, Brad Woods, and Ehsan Iranmanesh. Solving constrained quadratic binary problems
via quantum adiabatic evolution. Quantum Information & Computation, 16(11-12):1029–1047, 2016.

[Sch09] Mark Schmidt. A note on structural extensions of svms. 2009.
[SFB+98] Robert E Schapire, Yoav Freund, Peter Bartlett, Wee Sun Lee, et al. Boosting the margin: A new

explanation for the effectiveness of voting methods. The annals of statistics, 26(5):1651–1686, 1998.
[SL05] MS Sarandy and DA Lidar. Adiabatic approximation in open quantum systems. Physical Review A,

71(1):012331, 2005.
[SLRB17] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic

average gradient. Mathematical Programming, 162(1-2):83–112, 2017.
[SP03] Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In Proceedings of the

2003 Conference of the North American Chapter of the Association for Computational Linguistics on
Human Language Technology-Volume 1, pages 134–141. Association for Computational Linguistics, 2003.

[SS07] Fei Sha and Lawrence K Saul. Large margin hidden markov models for automatic speech recognition.
In Advances in neural information processing systems, pages 1249–1256, 2007.

[SSSSC11] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal
estimated sub-gradient solver for svm. Mathematical programming, 127(1):3–30, 2011.

[SZ13] Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence
results and optimal averaging schemes. In International Conference on Machine Learning, pages 71–79,

47

2013.
[TCK04] Ben Taskar, Vassil Chatalbashev, and Daphne Koller. Learning associative markov networks. In

Proceedings of the twenty-first international conference on Machine learning, page 102. ACM, 2004.
[TD00] Barbara M Terhal and David P DiVincenzo. Problem of equilibration and the computation of

correlation functions on a quantum computer. Physical Review A, 61(2):022301, 2000.
[TGK04] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks. In Advances in

neural information processing systems, pages 25–32, 2004.
[THJA04] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support vector

machine learning for interdependent and structured output spaces. In Proceedings of the twenty-first
international conference on Machine learning, page 104. ACM, 2004.

[TLJJ06a] Ben Taskar, Simon Lacoste-Julien, and Michael I Jordan. Structured prediction, dual extragradient
and bregman projections. Journal of Machine Learning Research, 7(Jul):1627–1653, 2006.

[TLJJ06b] Ben Taskar, Simon Lacoste-Julien, and Michael I Jordan. Structured prediction via the extragra-
dient method. In Advances in neural information processing systems, pages 1345–1352, 2006.

[TOV+11] Kristan Temme, Tobias J Osborne, Karl G Vollbrecht, David Poulin, and Frank Verstraete.
Quantum metropolis sampling. Nature, 471(7336):87, 2011.

[TSVL07] Choon Hui Teo, Alex Smola, SVN Vishwanathan, and Quoc Viet Le. A scalable modular convex
solver for regularized risk minimization. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 727–736. ACM, 2007.

[TTY+17] Yutaka Takeda, Shuhei Tamate, Yoshihisa Yamamoto, Hiroki Takesue, Takahiro Inagaki, and
Shoko Utsunomiya. Boltzmann sampling for an xy model using a non-degenerate optical parametric
oscillator network. Quantum Science and Technology, 3(1):014004, 2017.

[VALZ16] Lorenzo Campos Venuti, Tameem Albash, Daniel A Lidar, and Paolo Zanardi. Adiabaticity in
open quantum systems. Physical Review A, 93(3):032118, 2016.

[Vap63] Vladimir Vapnik. Pattern recognition using generalized portrait method. Automation and remote
control, 24:774–780, 1963.

[VLZ11] Maksims N Volkovs, Hugo Larochelle, and Richard S Zemel. Loss-sensitive training of probabilistic
conditional random fields. arXiv preprint arXiv:1107.1805, 2011.

[WKS14] Nathan Wiebe, Ashish Kapoor, and Krysta M Svore. Quantum deep learning. arXiv preprint
arXiv:1412.3489, 2014.

[WW+99] Jason Weston, Chris Watkins, et al. Support vector machines for multi-class pattern recognition.
In Esann, volume 99, pages 219–224, 1999.

[YJ09] Chun-Nam John Yu and Thorsten Joachims. Learning structural svms with latent variables. In
Proceedings of the 26th annual international conference on machine learning, pages 1169–1176. ACM,
2009.

[Yu11] Chun Nam Yu. Improved learning of structural support vector machines: training with latent variables
and nonlinear kernels. 2011.

[Zha04] Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the twenty-first international conference on Machine learning, page 116.
ACM, 2004.

48

Appendix A: Convergence of SAGA with Additive Error

Lemma A.1. Let δ = (1 + θ
√
D). In order to satisfy all the inequalities

1

n
− 2cγ

(
L− µ
L

+ γµαδ

)
≤ 0 , (A1)

1

τ
+ 2

(
1 +

1

α

)
δcγ2L− 1

n
≤ 0 , (A2)(

1

τ
− γµ

)
‖wt − w∗‖2 + 2γ2θ

√
D + γ2θ2D + 2γθ

√
D‖wt − w∗‖ ≤ 0 , (A3)

(1 + α) γδ − 1

L
≤ 0 , (A4)

it is sufficient to have

γ =
1

(1 + α)δL
, c =

2

nγ
, α = 8 ,

1

τ
= min

{
1

2n
,
γµ

2

}
, θ = min

{
1√
D
,

µ‖wt − w∗‖2

2
√
D
(

2
9L + 2‖wt − w∗‖

)} .
Proof. In what follows, we enumerate the steps required to satisfy all inequalities in the statement.
For (A4) we set

γ =
1

(1 + α)δL
. (†1)

For (A1) we consider the two cases of L
µ > 2 and L

µ ≤ 2. When L
µ > 2,

1

n
− 2cγ

(
L− µ
L

+ γµαδ

)
≤ 1

n
− 2cγ

(
L− µ
L

)
<

1

n
− cγ .

It therefore suffices to have

c ≥ 1

nγ
. (A5)

Alternatively, if L
µ ≤ 2,

1

n
− 2cγ

(
L− µ
L

+ γµαδ

)
≤ 1

n
− 2cγ (γµαδ) =

1

n
− 2cγ

(
1

(1 + α)δL
µαδ

)
=

1

n
− 2cγ

(
α

1 + α

µ

L

)
≤ 1

n
− 2cγ

(
α

1 + α

1

2

)
≤ 1

n
− cγ

2
,

where in the last line we used L
µ ≤ 2 and in the last inequality we made the assumption that

α ≥ 1 , (A6)

resulting in α
1+α ≥

1
2 . Consequently, to satisfy (A1) it suffices to have

c ≥ 2

nγ
. (A7)

49

By combining (A5) and (A7), we set

c =
2

nγ
. (†2)

For (A2) we require that

2

(
1 +

1

α

)
δcγ2L− 1

n
< 0 , (A8)

in which the inequality is strict (in order to assure 1
τ is strictly positive). Plugging in the values of c

from (†2) and γ from (†1), we have

2

(
1 + α

α

)
δ

(
2

nγ

)
γ2L− 1

n
=

4

αn
− 1

n
.

So, in order to satisfy (A8), it suffices to have 4
αn −

1
n < 0, resulting in α > 4. We may therefore set

α = 8 (†3)

in order to leave room for 1
τ to be larger in the next step. Note that this automatically satisfies

(A6). With this setting of α, the left-hand side of (A2) is equal to

1

τ
+ 2

(
1 +

1

α

)
δcγ2L− 1

n
=

1

τ
− 1

2n
.

To satisfy (A2), it is sufficient to require that

1

τ
≤ 1

2n
. (A9)

For (A3) we need

1

τ
− γµ < 0 ,

where the inequality is strict. To satisfy this, we set

1

τ
≤ γµ

2
. (A10)

By combining (A9) and (A10), we set

1

τ
= min

{
1

2n
,
γµ

2

}
. (†4)

By (A10), (A3) reads

−γµ
2
‖wt − w∗‖2 + γ2θ

√
D + γ2θ2D + 2γθ

√
D‖wt − w∗‖ ≤ 0 .

Cancelling a γ term and using the value of γ from (†1), we would like to satisfy

θ
√
DL

9(1 + θ
√
D)

+
θ2D

9(1 + θ
√
D)L

+ 2θ
√
D‖wt − w∗‖ ≤

µ

2
‖wt − w∗‖2 . (A11)

50

Let

θ ≤ 1√
D
. (A12)

So, we have

θ
√
D

9(1 + θ
√
D)L

+
θ2D

9(1 + θ
√
D)L

+ 2θ
√
D‖wt − w∗‖ ≤

θ
√
D

9L
+
θ2D

9L
+ 2θ
√
D‖wt − w∗‖

≤ θ
√
D

9L
+
θ 1√

D
D

9L
+ 2θ
√
D‖wt − w∗‖

=
√
D

(
2

9L
+ 2‖wt − w∗‖

)
θ .

To satisfy (A11), we may assume

θ ≤ µ‖wt − w∗‖2

2
√
D
(

2
9L + 2‖wt − w∗‖

) ,
and (A12). Therefore, we set

θ = min

{
1√
D
,

µ‖wt − w∗‖2

2
√
D
(

2
9L + 2‖wt − w∗‖

)} . (†5)

	Smooth Structured Prediction Using Quantum and Classical Gibbs Samplers
	Abstract
	 Contents
	I Introduction
	II Background
	A SVMs and SSVMs
	B Structured Prediction

	III Smooth approximation
	A A Min-Max Optimization Problem
	B Quantum Gibbs Sampling

	IV Computational complexity
	A A-SAGA: Approximate SAGA
	B Using A-SAGA to Optimize the Nonsmooth Objective Function
	C Comparison of SAGA and A-SAGA
	D Q-SAGA: A Quantum Algorithm for Optimizing the Smooth Approximation
	E A-SubSGDP: Approximate SGD with Polynomial-Decay Averaging
	F Q-SubSGDP: A Quantum Algorithm for Optimizing the Nonsmooth Objective Function

	V Numerical experiments
	VI Objective functions for structured prediction
	A S3VM
	B Conditional Log-Likelihood
	C Loss-Targeted Conditional Log-Likelihood
	D The Jensen Risk Bound

	VII Image tagging as a structured-prediction task
	A Numerical Results

	VIII Conclusion
	IX Acknowledgement
	 References
	A Convergence of SAGA with Additive Error

