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We study the performance scaling of three quantum algorithms for combinatorial optimization:
measurement-feedback coherent Ising machines (MFB-CIM), discrete adiabatic quantum compu-
tation (DAQC), and the Dürr–Høyer algorithm for quantum minimum finding (DH-QMF) that
is based on Grover’s search. We use MaxCut problems as our reference for comparison, and
time-to-solution (TTS) as a practical measure of performance for these optimization algorithms. We

empirically observe a Θ(2
√
n) scaling for the median TTS for MFB-CIM, in comparison to the expo-

nential scaling with the exponent n for DAQC and the provable Õ
(√

2n
)

scaling for DH-QMF. We
conclude that these scaling complexities result in a dramatic performance advantage for MFB-CIM
in comparison to the other two algorithms for solving MaxCut problems.

I. INTRODUCTION

Combinatorial optimization problems are ubiquitous in
modern science, engineering, and medicine. These prob-
lems are often NP-hard, so the runtime of classical al-
gorithms for solving them is expected to scale exponen-
tially. One approach for tackling such hard optimization
problems is to map them to the Ising spin glass model [1],

H = −
∑
i<j

JijSiSj −
∑
i

hiSi.

Here, each Si represents a classical Ising spin attaining a
value of ±1, [Jij ] is an Ising coupling matrix and [hi] is
a vector of local field biases on the spin sites. When all
hi are zero, the Ising model is equivalent to a (weighted)
MaxCut problem on a graph with vertices correspond-
ing to the spin sites and edge weights corresponding to
the Ising couplings between the spin sites. Various math-
ematical programming problems, such as partitioning
problems, binary integer linear programming, covering
and packing problems, satisfiability problems, colouring
problems, Hamiltonian cycles, tree problems, and graph
isomorphisms can be formulated in the Ising model, with
the required number of spins scaling at most cubically
with respect to the problem size [2]. This has been a pri-
mary motivation for the recent extensive study of various
Ising solvers. Several potential areas of industrial appli-
cation of Ising solvers include drug discovery and bio-
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catalyst development (e.g., in lead optimization or vir-
tual screening), compressed sensing, deep learning (e.g.,
in the synaptic pruning of deep neural network), schedul-
ing (e.g., resource allocation and traffic control), compu-
tational finance, and social networks (e.g., community
detection).

Approximate algorithms and heuristics, such as semi-
definite programming (SDP) [3], simulated annealing
(SA) [4, 5] and its variants [6, 7], and breakout local
search (BLS) [8] have been widely used as practical tools
for solving MaxCut problems. However, even problem
instances of moderate size require substantial computa-
tion time and, in the worst cases, solutions cannot be
found with such approximate algorithms and heuristics.
To overcome these shortcomings, a search for alterna-
tive solutions using various forms of quantum computing
has been actively pursued. Adiabatic quantum compu-
tation [9], quantum annealing [10, 11], and the quantum
approximate optimization algorithm (QAOA) [12] using
circuit model quantum computers have been proposed.
A coherent Ising machine (CIM) using networks of quan-
tum optical oscillators has also been studied and imple-
mented [13, 14].

Given that the present circuit model quantum com-
puters suffer from short coherence times, gate errors,
and limited connectivity among qubits, a fair compari-
son between them and modern heuristics is not yet pos-
sible [15–17]. This situation raises the important ques-
tion of whether quantum devices can, even in principle,
provide sensible solutions to combinatorial optimization
problems, assuming all sources of noise and imperfections
can be overcome and ideal quantum processors are built
in the future. In order to address this pressing question,
we perform a comparative numerical study on three dis-

ar
X

iv
:2

10
5.

03
52

8v
1 

 [
qu

an
t-

ph
] 

 7
 M

ay
 2

02
1

mailto: \pooya.ronagh@1qbit.com, and\ yoshihisa.yamamoto@ntt-research.com
mailto: \pooya.ronagh@1qbit.com, and\ yoshihisa.yamamoto@ntt-research.com
mailto: \pooya.ronagh@1qbit.com, and\ yoshihisa.yamamoto@ntt-research.com


2

tinct quantum approaches, ignoring the effects of noise,
gate errors, and decoherence, that is, we compare the
ultimate theoretical limits of three quantum approaches.

The first approach is based on the effects of construc-
tive and destructive quantum interference of amplitudes
in a circuit model quantum computer that utilizes only
unitary evolution of pure states and projective (exact)
measurement of qubits. The approach uses Grover’s
search algorithm [18, 19] as a key computational prim-
itive. We call this approach “DH-QMF” in reference
to Dürr and Høyer’s “quantum minimum finding” algo-
rithm [20].

The second approach is based on adiabatic quantum
state preparation implemented on a circuit model quan-
tum computer. The underlying concept, the quantum
adiabatic theorem, goes back as far as to the seminal
work by Born and Fock [21]. Its application to quan-
tum computing and solving optimization problems was
introduced by Farhi et al. [9]. A Trotterized approxima-
tion to adiabatic evolution gives rise to a discrete im-
plementation suitable for the circuit model. We refer
to this approach as “discrete adiabatic quantum compu-
tation” (DAQC). A variant of DAQC is the “quantum
approximate optimization algorithm” (QAOA) [12, 22].
This algorithm uses an iterative unitary evolution of pure
states in a quantum circuit according to a mixing Hamil-
tonian and a problem Hamiltonian, which in the frame-
work of adiabatic quantum computation correspond to
the initial and final Hamiltonians of evolution, respec-
tively. QAOA is considered a promising candidate for
solving combinatorial optimization problems on noisy,
intermediate-scale quantum (NISQ) devices (although its
original formulation is not restricted to implementations
on such devices). As such, QAOA has become associated
with NISQ-type algorithms, that is, it is commonly char-
acterized by its use of shallow quantum circuits of short
depth along with a method for optimizing the set of pa-
rameters specifying the unitary gates in those circuits.
Motivated by our interest in exploring the capabilities
of QAOA for solving optimization problems, we study
two schemes for optimizing its quantum gate parame-
ters. The first scheme treats gate parameters as hyper-
parameters that follow a tuned schedule for a Trotterized
adiabatic evolution, very much in accordance with the or-
dinary DAQC approach. The second scheme uses a varia-
tional hybrid quantum–classical protocol to optimize the
gate parameters. We find a performance advantage for
the tuned adiabatic schedules of DAQC over the varia-
tional method commonly used in hybrid QAOA schemes.
For this reason, we use pre-tuned DAQC schedules for our
benchmarking analysis. Moreover, to obtain the ultimate
theoretical performance limit (for a fair comparison with
the other approaches), we drop the requirement of hav-
ing to use only low-depth circuits that are necessary in
the case of NISQ devices. That is, our reported bench-
marking results pertain to the implementation of DAQC
using quantum circuits of arbitrary depth.

The third approach is based on a measurement-

feedback coherent Ising machine (MFB-CIM) [23, 24].
This algorithm utilizes a quantum-to-classical transition
in an open-dissipative, non-equilibrium network of quan-
tum oscillators. A critical phenomenon known as pitch-
fork bifurcation realizes the transition of squeezed vac-
uum states to coherent states in the optical paramet-
ric oscillator. The measurement-feedback circuit plays
several important roles. It continually reduces entropy
and sustains a quasi-pure state in the quantum oscillator
network in a controlled manner using repeated approx-
imate measurements. It, additionally, implements the
Ising coupling matrix [Jij ] and local field vector [hi] in
an iterative fashion. Finally, it removes the amplitude
heterogeneity among the oscillators and destabilizes the
machine state out of local minima. Table I summarizes
the differences among the three approaches studied in
this paper.

When studying quantum algorithms, it is important
to consider the effect of noise and control errors, and
the overhead needed to overcome them. Several previ-
ous studies have been investigating these effects on the
performance of QAOA (here viewed as a NISQ-type vari-
ant of DAQC). In references [25, 26], various Pauli noise
channels, namely the dephasing, bit-flip, and the depo-
larizing noise channels, are considered. These two papers
report on the fidelity of the state prepared by a noisy
QAOA circuit to the state prepared by an ideal QAOA
circuit, for varying amounts of physical noise affecting the
circuit. In contrast, [22] models noise via single-qubit ro-
tations by an angle chosen from a Gaussian distribution
with variance values of TG/T2, where TG is the gate time
and T2 is the decoherence time of the qubits. All three
papers provide results on how noise affects the expected
energy of the prepared state.

DH-QMF circuits are much deeper than QAOA cir-
cuits and, therefore, their performance is significantly
hampered by various sources of noise unless the algo-
rithm is run on a fault-tolerant quantum computer with
quantum error correction [27–34]. Different noise mod-
els have been used to study the sensitivity of Grover’s
search by simulating small quantum circuits that apply
it to simple functions. [27] introduces random Gaussian
noise on each step of Grover’s search. [28] studies the
effect of gate imperfections on the probability of success
of the algorithm. [31] examines the effect of unbiased
and isotropic unitary noise resulting from small pertur-
bations of Hadamard gates. [29] models the effect of de-
coherence by introducing phase errors in each qubit and
time step and using a perturbative method. [32] con-
ducts a numerical analysis on the effects of single-qubit
and two-qubit gate errors and memory errors, modelling
decoherence using a depolarizing channel. The impact of
using a noisy oracle is examined in [30], wherein noise is
modelled by introducing random phase errors. The ef-
fects of localized dephasing are studied in [34]. Finally,
[33] investigates the effects of various noise channels us-
ing trace-preserving, completely positive maps applied to
density matrices.
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DH-QMF DAQC MFB-CIM

Quantum dynamics Closed-unitary Closed-unitary Open-dissipative

Operational principle
Amplitude amplification
by quantum interference

Adiabatic quantum evolution Quantum-to-classical transition

Information carrier Digital (spin-1/2 particle) Digital (spin-1/2 particle) Analog (harmonic oscillator)

Decoherence time T2 →∞ T2 →∞ T2 →∞

Dissipation time T1 →∞ T1 →∞ T1 : finite

Gate error None None Vacuum noise limited

Spin-spin coupling all-to-all all-to-all all-to-all

TABLE I: Three approaches studied for MaxCut problems: the Dürr–Høyer algorithm for quantum minimum finding (DH-QMF) based on
Grover’s search, the discretized adiabatic quantum computation algorithm (DAQC), and the measurement-feedback coherent Ising machine
(MFB-CIM).

We have evaluated the wall-clock time-to-solution
(TTS) of the three algorithms introduced above for solv-
ing MaxCut problems, and empirically found exponen-
tial scaling laws for them already in the relatively small
problem size range of 4 to 800 spins. In order to elucidate
the ultimate performance limits of these solvers, we as-
sume no extrinsic noise, gate errors, or connectivity lim-
itations exist in the hardware. That is, we assume that
phase decoherence (T2) and energy dissipation (T1) times
are infinite and gate errors are absent. Consequently,
there is no overhead arising from the need to perform
quantum error correction and to build fault-tolerant ar-
chitectures. We also assume that all spins (represented
by qubits in the circuit model) can be coupled to each
other via (non-local) spin–spin interaction with a uni-
versal gate time of 10 nanoseconds. Therefore, there is
no need to implement expensive sequences of swap gates
or other bus techniques for transferring quantum infor-
mation across the hardware. However, since energy dis-
sipation and stochastic noise both constitute important
computational resources for the MFB-CIM, we allow a
finite energy dissipation time T1, as well as a finite gate
error limited by vacuum noise, for the MFB-CIM.

From a fundamental viewpoint, such a comparative
study is of interest but the outcome is difficult to predict,
because the three algorithms are based on completely dif-
ferent computational principles, as shown in Table I. The
DH-QMF algorithm iteratively deploys Grover’s search,
which uses a unitary evolution of a superposition of com-
putation basis states in order to amplify the amplitude
of a target state by successive constructive interference,
while the amplitudes of all the other states are attenu-
ated by destructive interference. The DAQC algorithm
attempts to prepare a pure state that has a large over-
lap with the ground state of the optimization problem
through an approximation of the adiabatic quantum evo-

lution. Finally, the ground state search mechanism of
the MFB-CIM employs a collective phase transition at
the threshold of an optical parametric oscillator (OPO)
network. The correlations formed among the squeezed
vacuum states in OPOs below the threshold guide the
network toward oscillating at a ground state.

It is worth noting that all the algorithms in our study
in various ways rely on hybrid quantum–classical archi-
tectures for computation. In a closed-loop CIM with
self-diagnosis and dynamical feedback control, a classical
processor plays an important role by detecting when the
OPO network is trapped in local minima, and destabi-
lizes it out of those states. The DH-QMF algorithm also
relies on comparing the values of an objective function
with a (classical) threshold value. This threshold value is
updated in a classical coprocessor as DH-QMF proceeds.
Finally, DAQC relies on tuning a set of parameters (e.g.,
the rotation angles of quantum gates). These parameters
can be treated as hyperparameters of a predefined ap-
proximate adiabatic evolution and tuned for the problem
type solved by the algorithm. Alternatively, the quantum
circuit can be viewed as a variational ansatz, in which
case the gate parameters are optimized using a classical
optimizer. In the latter case, the algorithm can be con-
sidered as a variational quantum algorithm [35]. QAOA
is commonly viewed as such an algorithm. In previous
studies, the contribution of the variational optimization
of QAOA parameters to the TTS has often been ignored.
In fact, while both approaches (i.e., hyperparameter tun-
ing and variational optimization) have been adopted for
solving MaxCut problems using QAOA [36, 37], our in-
vestigation makes it clear that the variational approach
hurts the TTS scaling significantly. The optimization
landscape for such a variational quantum algorithm is
ill-behaved, which results in a poor and unstable scal-
ing for TTS with respect to the size of the MaxCut



4

instances (refer to Appendix C). As a result, the TTS
scalings reported in this paper rely on pre-tuned DAQC
schedules rather than variational optimization.

II. SCALING OF THE MFB-CIM

A CIM is a non-equilibrium, open-dissipative comput-
ing system based on a network of degenerate OPOs to
find a ground state of Ising problems [13, 38–41]. The
Ising Hamiltonian is mapped to the loss landscape of the
OPO network formed by the dissipative coupling rather
than the standard Hamiltonian coupling. By providing a
sufficient gain to compensate for the overall network loss,
a ground state of the target Hamiltonian is expected to
build up spontaneously as a single oscillation mode [14].
However, the mapping of the cost function to the OPO
network loss landscape often fails in the case of a frus-
trated spin problem due to the OPO amplitude inhomo-
geneity [13, 23]. In addition, with an increasing num-
ber of local minima occurring as problem sizes become
larger, the machine state is trapped in those minima for a
substantial amount of time, thereby causing the machine
to report suboptimal solutions [14, 24]. Recently, self-
diagnosis and dynamical feedback mechanisms have been
introduced by a measurement-feedback CIM (MFB-CIM)
to overcome these problems [23, 24]. This is achieved by
a mutual coupling field dynamically modulated for each

OPO to suppress the amplitude inhomogeneity and si-
multaneously to destabilize the machine’s state out of
local minima.

A. Principle of Operation

A schematic diagram of two MFB-CIMs with prede-
fined feedback control (hereafter referred to as “open-
loop CIM”) and with self-diagnosis and dynamical feed-
back control (hereafter referred to as “closed-loop CIM”),
is shown in Fig. 1 (a). If the fibre ring resonator has
high finesse, both CIMs are modelled via the Gaussian
quantum theory [42, 43]. The dynamics captured by
the master equation for the density operator (i.e., the
Liouville–von Neumann equation) is driven by the para-

metric interaction Hamiltonian, Ĥ = i~S2
∑
i

(
â†2i − â2

i

)
,

the measurement-induced state reduction (the third term
on the right-hand side in Eq. (1)), the coherent injection
(the fourth term on the right-hand side in Eq. (1)), as
well as three Liouvillians. The Liouvillians pertain to the
linear loss due to measurement and injection couplings,

L̂(i)
c =

√
Jâi, two-photon absorption loss (i.e., parametric

back conversion) in a degenerate parametric amplifying

device, L̂(i)
2 =

√
B/2 â2

i , and background linear losses,

L̂(i)
1 =

√
γsâi, respectively [43]. The master equation is

thus given by

d

dt
ρ̂ = − i

~

[
Ĥ, ρ̂

]
+

n∑
i=1

∑
k=1,2,c

([
L̂(i)
k , ρ̂L̂(i)†

k

]
+ h.c.

)
+
√
J

n∑
i=1

(
âiρ̂+ ρ̂â†i − 〈âi + â†i 〉ρ̂

)
wi +

J

2

n∑
i,k=1

ei(t)Jik

(
〈âk + â†k〉+

wk√
J

)
[â†i − âi, ρ̂]. (1)

In general, the numerical integration of Eq. (1) requires
exponentially growing resources as the problem size n
(i.e., the number of spins) increases. Generally speaking,
the size of the density matrix scales as O(n0

n × n0
n),

where n0 � 1 is the maximum number of photons possi-
ble for each OPO pulse. In MFB-CIMs, however, there
is no entanglement between the OPO pulses, that is, the
OPO states are separable. Therefore, the simulation’s
memory requirements reduce to O(n × n0

2). However,
this reduction still yields too many c-number differential
equations due to the large upper bounds on the number
of photons n0 . 107 and the number of spins n ≤ 1000.
The Gaussian quantum model has been introduced to

overcome this difficulty [24, 43].
In the case of a small saturation parameter,

g2 = B/γs � 1, we can split the i-th OPO’s pulse am-

plitude operator, âi = 1√
2
(X̂i + iP̂i), into the mean field

and small fluctuation operators, X̂i = 〈X̂i〉 + ∆X̂i and

P̂i = 〈P̂i〉 + ∆P̂i. The saturation parameter g2 corre-
sponds to the inverse photon number at twice the thresh-
old pump rate of a solitary OPO. With an appropriate
choice of the pump phase, each OPO mean-field is gen-
erated only in an X̂-quadrature, that is, 〈P̂i〉 = 0. The

equation of motion for the mean field µi = 〈X̂i〉/
√

2 and

the variances σi = 〈∆X̂2
i 〉 and ηi = 〈∆P̂ 2

i 〉 obey the fol-
lowing equations [43]:
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d

dt
µi =

[
− (1 + j) + p− g2µ2

i

]
µi + jei(t)

∑
k

Jikµ̃k +
√
j (σi − 1/2)wi , (2)

d

dt
σi = 2

[
− (1 + j) + p− 3g2µ2

i

]
σi − 2j(σi − 1/2)

2
+
[
(1 + j) + 2g2µ2

i

]
, (3)

d

dt
ηi = 2

[
− (1 + j)− p− g2µ2

i

]
ηi +

[
(1 + j) + 2g2µ2

i

]
. (4)

Here, t = γsT is a normalized and dimensionless time,
where T is physical (or wall-clock) time, and γs is the
loss rate of the cavity. The time t is normalized so that
the background linear loss (with a signal amplitude de-
cay rate of 1/e) is 1. The term −(1 + j) in Eqs. (2)
to (4) represents a background linear loss (−1) and an
out-coupling loss (−j) for optical homodyne measure-
ment and feedback injection, where j = J/γs is a nor-
malized out-coupling rate (see Fig. 1(a)). The parame-
ter p = S/γs is a normalized linear gain coefficient pro-
vided by the parametric device. The term g2µ2

i repre-
sents two-photon absorption loss (i.e., back conversion
from signal to pump fields). The second and third terms
on the right-hand side of Eq. (2), respectively, represent
the Ising coupling term and the measurement-induced
shift of the mean-field µi. The inferred mean-field am-

plitude, µ̃k = µk +
√

1
4jwk, deviates from the internal

mean-field amplitude µk by a finite measurement uncer-
tainty in the optical homodyne detection. The random
variable wk

√
∆t attains values drawn from the standard

normal distribution, where ∆t is a time step for the nu-
merical integration of Eqs. (2) to (4). The k-th Ising
spin Sk = ±1 is determined by the sign of the inferred
mean-field amplitude, Sk = µ̃k/|µ̃k|. Jik is the Ising
coupling coefficient and ei(t) is a dynamically modulated
feedback-field amplitude. The second term on the right-
hand side of Eq. (3) represents the measurement-induced
partial state reduction of the OPO field. The last terms
of Eqs. (3) and (4), respectively, represent the variance
increase by the incident (fresh) vacuum field fluctuations
via linear loss and the pump noise coupled to the OPO
field via gain saturation.

The dynamically modulated feedback-field amplitude
ei(t) is introduced to reduce the amplitude inhomogene-
ity [23], which is determined by the inferred signal am-
plitude µ̃i:

d

dt
ei(t) = −β

[
g2µ̃2

i − a
]
ei(t). (5)

Here, β is a positive constant representing the rate of
change for the exponentially growing or attenuating feed-
back amplitude ei(t), and a is a target squared ampli-
tude. Both a and the pump rate p are dynamically de-
termined by the difference of the current Ising energy
E(t) = −

∑
i<k JikSiSk and the lowest Ising energy Eopt

(a)

(b)          Closed-loop CIM

(b2)

(b3)

(b4)

(b1)

(c)           Open-loop CIM

(c2)

(c3)

(c4)

(c1)

c(2) Nonlinear Crystal

Ising Coupling

!𝐽!"𝜇$"

Self-diagnosis feedback
𝑑𝑒!
𝑑𝑡

= −𝛽 𝑔#𝜇$"
#−𝑎 𝑒!𝑝

𝑒!

Optical homodyne 
measurement

{𝜇$!}

OPO 1

OPO 2

OPO 3

OPO n

OPO n-1
…

OPO n-2 Vacuum
Fluctuation

Closed-loop CIM

Open-loop CIM

𝑑𝜇 !
𝑑𝑡 = − 1 + 𝑗 + 𝑝 − 𝑔"𝜇! " 𝜇!

Feedback 
Injection

{𝜇$!}

{𝜇$!}

FIG. 1: (a) Schematic diagram of the measurement-feedback coupling
CIMs with and without the self-diagnosis and dynamic feedback
control (closed-loop and open-loop CIMs) indicated using dashed blue
and orange lines, respectively. (b) and (c) Dynamical behaviour of the
closed-loop and open-loop CIMs, respectively. (b1) and (c1) Inferred
Ising energy (the dashed horizontal lines are the lowest three Ising
eigen-energies). (b2) and (c2) Mean-field amplitude µi(t). (b3) and
(c3) Feedback-field amplitude ei(t). (b4) Target squared amplitude
a(t). (c4) Pump rate p(t).

visited previously:

a(t) = α+ ρa tanh

(
E(t)− Eopt

∆

)
, (6)

p(t) = π − ρp tanh

(
E(t)− Eopt

∆

)
. (7)

Here, π, α, ρa, ρp, and ∆ are predetermined positive
parameters which characterize the self-diagnosis and dy-
namic feedback control.
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The machine can distinguish the following three modes
of operation from the energy measurements. When
E(t)− Eopt < −∆, the machine is in a gradient descent
mode and moving toward a local minimum, in which case
the pump is set to a positive value of π + ρp (leading to
parametric amplification). When |E(t) − Eopt| � ∆, the
machine is close to, or trapped in, a local minimum, in
which case the pump is switched off (i.e., there is no
parametric amplification) so as to destabilize the current
spin configuration. When E(t) − Eopt > ∆, the machine
is attempting to escape from a previously visited local
minimum, in which case the pump is set to a negative
value of π−ρp (i.e., there is parametric de-amplification)
to increase the rate of spin flips.

Fig. 1(b) shows the time evolution of a closed-loop CIM
to demonstrate its inherent exploratory behaviour from
one local minimum to another. We solve a MaxCut
problem with randomly generated discrete edge-weights
Jij ∈ {−1,−0.9, . . . , 0.9, 1} over n = 30 vertices, for
which an exact solution is obtained by performing an
exhaustive search. The dynamical behaviour of the in-
ferred Ising energy measured from the ground state en-
ergy, ∆E(t) = E(t) − EG, the mean amplitude, µ(t), the
feedback-field amplitude, e(t), and the target squared
amplitude, a(t), are shown in Fig. 1 (b) and (c). The
results shown in Fig. 1(b) are taken from a single trial
for one particular problem instance and a particular set
of noise amplitudes wi

√
∆t. The feedback parameters

are set to α = 1.0, π = 0.2, ρa = ρp = 1.0, ∆ = 1/5,
and β = 1.0 [24]. The saturation parameter is chosen
as g2 = 10−4. The time step ∆t for the numerical in-
tegration of Eqs. (2) to (4) is identical to the normal-
ized round-trip time ∆tc = γs∆Tc = 0.025. This means
the signal-field lifetime 1/γs is 40 times greater than the
round-trip time.

As shown in Fig. 1(b1), the inferred Ising energy E(t)
fluctuates up and down during the search for a solution
even after the machine finds one of the degenerate ground
states. As shown in Fig. 1(b2), the measured squared
amplitude g2µ̃i

2 is stabilized to the target squared am-
plitude a through the dynamically modulated feedback
mean-field ei(t). Several OPO amplitudes, however,
flipped their signs followed by an exponential increase
in ei(t), while most other OPOs maintained a target
amplitude. During this spin-flip process, the feedback-
field amplitude ei(t) increases exponentially and then de-
creases exponentially after the OPO’s squared amplitude
g2µ̃2

i exceeds the target squared amplitude a(t). The
mutual coupling strength

∑
k Jikµ̃k is adjusted in or-

der to decrease the energy continuously by flipping the
“wrong” spins and preserving the “correct” ones. If the
machine reaches local minima, which may also include
global minima (in which case there are degenerate ground
states), the current Ising energy E(t) = −

∑
i<k JikSiSk

is roughly equal to the minimum Ising energy Eopt previ-
ously visited (E(t) ' Eopt). The machine then decreases
the target squared amplitude a, which helps it to escape
from the local minimum. During this escape, the cur-

rent Ising energy E(t) becomes greater than the mini-
mum Ising energy Eopt. The machine then switches the
pump rate p to a negative value and deamplifies the sig-
nal amplitude, which results in further destabilization of
the local minimum. As a consequence of such dynamical
modulation of the pump rate p and the target squared
amplitude a, the machine continually escapes local min-
ima, migrating from one local minimum to another as
the computation carries on.

Start
Stop

(a)

Start

Stop

(b)

FIG. 2: Variances 〈∆X̂2〉 and 〈∆P̂ 2〉 for (a) a closed-loop CIM and
(b) an open-loop CIM. The shaded areas show the quantum domains

(〈∆X̂2〉 < 1/2 or 〈∆P̂ 2〉 < 1/2). Note that these are the results for
one particular OPO, i.e., for one of the trajectories shown in Fig. 1(b)
and (c).

Fig. 1(c) shows the time evolution of an open-loop
CIM, in which both the pump rate p and the feedback-
field amplitude ei(t) are predetermined constants.

As shown in Fig. 2(a) and (b), the quantum states of
the OPO fields satisfy the minimum uncertainty prod-
uct, 〈∆X̂2〉〈∆P̂ 2〉 = 1/4, with a small excess factor of
∼ 30% despite the open-dissipative nature of the ma-
chine. We note that each OPO state is in a quantum
domain (〈∆X̂2〉 < 1/2 or 〈∆P̂ 2〉 < 1/2), which is shown
by the shaded area in Fig. 2. This is a consequence of
the repeated homodyne measurements performed during
the computation, which iteratively reduces the entropy
in the machine and partially collapses the OPO state
such that it comes close to being a minimum-uncertainty
state. In a closed-loop CIM, parametric amplification
with a positive pump rate (p > 0) is employed only in
the initial stage, but parametric deamplification with a
negative pump rate (p < 0) is used later on. The result-

ing squeezing (〈∆X̂2〉 < 1/2) rather than anti-squeezing

(〈∆X̂2〉 > 1/2) is favourable for exploration when using
repetitive spin flips. In contrast, parametric amplifica-
tion with a positive pump rate is used in an open-loop
CIM throughout the computation.

B. Time-to-Solution

Figures 3(a) and (b) show the median of the suc-
cess probability Ps and time-to-solution (TTS) ts of
the closed-loop CIM as a function of problem size
n = 4, 5, . . . , 30 with varying runtime tmax. We perform



7

1000 trials, with a trial considered successful if the ma-
chine finds an exact solution within tmax. The success
probability Ps decreases exponentially with respect to n,
especially for tmax ≤ 5. For a greater value of tmax,
the slope of the decay improves as shown in Fig. 3(a).
The TTS is defined as the expected computation time
required to find a ground state for a particular problem
instance with 99% confidence. As such, it is defined via

ts = R99 · tmax , (8)

where R99 = log(0.01)
log(1−Ps)

is the number of trials required

to achieve a 99% probability of success. We solve 1000
instances for each problem size (n = 4, . . . , 30) to eval-
uate the median Ps and TTS. Note that ts refers to
the normalized and dimensionless TTS, while the actual
wall-clock TTS (in seconds) is denoted by T . These
two notions of TTS are related via the equation ts =
γsT . The wall-clock time T is estimated by assum-
ing a cavity round-trip time of ∆Tc = 10 nanoseconds
(all-to-all spin coupling is implemented in 10 nanosec-
onds), and a 1/e signal amplitude decay time of 400
nanoseconds (γs∆Tc = 0.025). An important observation
from Fig. 3(b) is that the optimal median TTS scales as
an exponential function of the square root of the problem
size, that is, an exponential of

√
n rather than n. This

unique trend was first noticed in [17].

(a)

(b)

FIG. 3: (a) Success probability Ps and (b) time-to-solution (in units
of signal field decay time 1/γs) as a function of problem size n for
various runtimes tmax. The black dotted line shows the best-fit TTS

curve of the form AB
√

n.

Fig. 4(a) and (b) show the optimum TTS of the closed-
loop CIM and the open-loop CIM with respect to the
problem size n. We solve two types of MaxCut prob-
lems. The first type are randomly generated instances

with edge weights Jij ∈ {−1,−0.9, . . . , 0.9, 1}. We re-
fer to these instances as 21-weight MaxCut problem
instances. The second type are randomly generated
Sherrington–Kirkpatrick (SK) spin glass instances with
Jij = ±1. We study the open-loop CIM with the same
Gaussian quantum model without dynamical modulation
of ei(t), ai(t), and pi(t), but with measurement-induced
state reduction (the third term of Eq. (2) and the sec-
ond term of Eq. (3)) [43]. We set the feedback param-
eters β = 0, ρa = 0, and ρp = 0 for the open-loop
CIM in order to have a constant feedback field strength
ei(t) = ei(0) = 1.0. The pump rate p is linearly increased
from p = 0.5 at t = 0 (below threshold) to p = 1.0 at
tmax (above threshold). As shown in Fig. 4(a) and (b),
the performance of the closed-loop CIM is superior to
that of the open-loop CIM for both types of MaxCut
problems.

Table II summarizes the best-fitting parameters A and
B for a function of the form ts = AB

√
n in both the

closed-loop and open-loop CIMs. The smaller coeffi-
cient values for B for the closed-loop CIM than those
for the open-loop CIM highlight the superior scaling of
the closed-loop CIM compared to the open-loop variant.
We note that A is expressed in units of a normalized time
ts = γsT , where T is the wall-clock time.

TABLE II: Parameters A and B found by regression of a function of

the form AB
√

n to the TTS curves of the closed-loop and open-loop
CIMs for the two types of MaxCut instances.

21-weight random Jij Binary random Jij
n = 4, . . . , 30 n = 4, . . . , 30

Closed loop Open loop Closed loop Open loop
A 0.26 0.32 0.16 0.13
B 2.32 4.12 2.33 3.92

C. Discrete-Time Model

The previous section presented the results of our study
of the performance of closed-loop and open-loop CIMs
with a high-finesse cavity. Nevertheless, it is obvious
that a low-finesse cavity with a larger signal decay rate
γs is favourable in terms of the runtime of the algo-
rithm. This is because the wall-clock time T scales as
T = ts/γs. However, it appears that the continuous-time
Gaussian quantum theory based on the master equation
[Eq. (1)] breaks down in the case of a low-finesse cavity.
Here, we describe a new discrete-time Gaussian quantum
model [44].

We treat the MFB-CIM as an n-mode bosonic system
with 2n quadrature operators, X̂1, P̂1, . . . , X̂n, P̂n, satis-
fying [X̂k, P̂k′ ] = iδkk′ . If the system is in a Gaussian
state, it is fully characterized by a mean-field vector µ
and a covariance matrix Σ. In other words, the density
operator of each OPO pulse can be written as ρ̂i(µi,Σi),
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(a) 21-weight Problem Instances (b) SK Model Instances

FIG. 4: The optimal (median) time-to-solution of the closed-loop CIM and open-loop CIM on (a) 21-weight randomly generated Jij and (b)
binary-weight randomly generated instances (Jij = ±1, SK model). The shaded regions represent the interquartile range (IQR), showing the

region between the 25th and 75th percentiles obtained from the 1000 instances. The dashed blue and red lines are fitted curves of the form AB
√

n.

where

µi = (〈X̂i〉, 〈P̂i〉), (9)

Σi =
(

〈X̂2
i 〉 1

2 〈∆X̂i∆P̂i + ∆P̂i∆X̂i〉
1
2 〈∆X̂i∆P̂i + ∆P̂i∆X̂i〉 〈P̂ 2

i 〉

)
. (10)

We let ρ̂ (µi(`),Σi(`)) denote the state of the i-th OPO
pulse just before it starts its `-th round trip through the
cavity. To propagate the state of the i-th signal pulse
from ρ̂(µi(`),Σi(`)) to ρ̂(µi(`+ 1),Σi(`+ 1)), we perform
the following five discrete maps iteratively: the back-
ground linear-loss map B, the OPO crystal propagation
map χ, the out-coupling loss map Bout, the homodyne de-
tection map H, and the feedback injection map D. These
discrete maps are defined in Appendix A.

In order to see how the wall-clock TTS of the closed-
loop and open-loop CIMs are decreased by increasing the
cavity loss rate, γs, we solved the 21-weight MaxCut in-
stances and the SK model instances for n = 30 to explore
the TTS as a function of the normalized loss rate γs∆T c.
The results are shown in Fig. 5.

As expected, the TTS (expressed in terms of the num-
ber of round trips) decreases monotonically for both
problem types and for both the closed-loop CIM and
the open-loop CIM as long as γs∆T c . 0.1 (i.e., in the
case of a high-finesse cavity). However, if γs∆T c & 1
(i.e., in the case of a very-low-finesse cavity), the TTS
increases for both the closed-loop and the open-loop
CIMs. This is because one homodyne measurement per
round-trip loss does not provide sufficiently accurate in-
formation about the internal OPO pulse state and, there-
fore, the measurement-feedback circuit fails to implement
the Ising Hamiltonian and self-diagnosis feedback prop-
erly. At n = 30, the optimum normalized loss rate is
γs∆T c ∼ 1 for both the closed-loop and the open-loop
CIMs.

III. SCALING OF DAQC

We now analyze discrete adiabatic quantum compu-
tation (DAQC) for solving MaxCut problems. DAQC
is associated with the first-order Suzuki—Trotter ex-
pansion of the adiabatic Hamiltonian evolution in this
paper. We consider an interesting variant of DAQC
to be the quantum approximate optimization algorithm
(QAOA) [12, 45]. This algorithm attempts to prepare
the ground state of a target Hamiltonian HP. QAOA
is considered to be an interesting candidate for solving
combinatorial optimization problems on NISQ devices,
and its performance as a NISQ algorithm is being stud-
ied [22, 36, 37, 46]. Similar to DAQC, the circuit ansatz
of QAOA is a Trotterized analogue of quantum adiabatic
evolution. The state |+〉⊗n is prepared on n qubits, and
is evolved through a sequence of p “layers”. Each layer
consists of an evolution according to a target Hamilto-
nian HP along a computational basis, here chosen to be
the Pauli-Z eigenbasis, followed by an evolution under a
mixing Hamiltonian HM =

∑
iXi. A vector of tunable

parameters γ = (γ1, . . . , γp) is chosen, where each entry
γi corresponds to the angle of rotation along HP in the
i-th layer. Similarly, a vector β = (β1, . . . , βp) is cho-
sen for the HM evolutions. Finally, the qubits undergo
projective measurements in the computational basis, and
the measurement results are used to compute the energy
of the Hamiltonian HP. The circuit for QAOA is repre-
sented in Fig. 6.

A “shot” of the circuit with parameters (γ, β) is de-
fined as a single execution of the circuit from prepara-
tion to measurement, and returns a single energy mea-
surement. Multiple shots performed with the same pa-
rameters (γ, β) can return different results, as they are
taken from independent copies of the same prepared state
|ψ(γ, β)〉. For the weighted MaxCut problem, we use
the target Hamiltonian HP =

∑
i,j JijZiZj , which is
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(a) 21-Weight Problem Instances (b) SK Model Instances

FIG. 5: Median TTS in units of the number of round trips (left y-axis) and corresponding wall-clock time (right y-axis) of the closed-loop CIM
and the open-loop CIM versus the normalized loss rate γs∆T c for (a) 21-weight problem instances and (b) SK model instances, of size n = 30 in
both cases.

diagonal in the computational basis and whose ground
states correspond to the largest cuts of the complete
n-vertex graph with edge weights Jij .

We study two schemes for optimizing the gate param-
eters of the QAOA algorithm. As mentioned in the in-
troduction, the first scheme treats gate parameters as
hyper-parameters that follow a tuned DAQC schedule, in
accordance with the ordinary DAQC approach. The sec-
ond scheme uses a variational hybrid quantum–classical
protocol to optimize the gate parameters. We find the
first scheme to be superior to the second.

A. Time-to-Solution Scaling of DAQC

To study the time-to-solution of DAQC in the solving
of MaxCut problems, we analyze the QAOA algorithm
using pre-tuned Trotterized adiabatic scheduling. We use
randomly generated graphs of size n ∈ {10, . . . , 20}. Our
test set consists of 1000 graphs of each size, with edge
weights Jk` = ±0.1j, where j ∈ {0, 1, . . . , 10}.

Given a parameter vector (γ, β), we evaluate the TTS
of QAOA as a product of two terms [6],

TTS(γ, β) = R99(γ, β) · tss , (11)

|+〉
|+〉
|+〉
|+〉

e−iγ1HP e−iβ1HM · · · e−iγpHP e−iβpHM |ψ(γ, β)〉

FIG. 6: Quantum approximate optimization algorithm (QAOA)
circuit with p layers. The rotation parameters satisfy γi ∈ [0, π) and
βi ∈ [0, π/2). This ansatz is analogous to the Hamiltonian simulation
circuits implementing a discretized adiabatic evolution in terms of a
first-order Suzuki—Trotter expansion, which we refer to as DAQC.

where tss is the time taken for a single shot.
The R99 is the number of shots that must be performed

to ensure a 99% probability of observing the ground state
of HP. It is a metric commonly used to benchmark the
success of heuristic optimization algorithms. If the state
|ψ(γ, β)〉 has a probability p of being projected onto the
ground state, then

R99(γ, β) =
log(0.01)

log(1− p)
. (12)

We estimated the time required for a single shot using
the following assumptions for an ideal, highly performant
quantum computer with access to arbitrary-angle, single-
qubit X-rotations and two-qubit ZZ-rotations.

Assumption 1. The preparation and measurements of
qubits collectively take 1.0 microseconds. The processor
performs any single-qubit or two-qubit gate operations
in 10 nanoseconds. Gate operations may be performed
simultaneously if they do not act on the same qubit. In
addition, all components of the circuit are noise-free and,
therefore, there is no overhead for quantum error correc-
tion or fault-tolerant quantum computation.

For each problem size varying from 10 to 20 vertices,
Fig. 7 shows a plot of the median TTS, suggesting that
the TTS scales exponentially with respect to problem
size. With more layers, QAOA has a lower potential
R99, but a single shot takes more time. We found the
best scaling was achieved with p ≈ 20 layers. However,
near-term hardware will suffer from various sources of
noise, such as decoherence and control noise, which will
restrict us to employing shallow QAOA circuits with only
a few layers, for example, p = 4.

The QAOA parameters (γ, β) used in Fig. 7 were pro-
duced using the formula explained in what follows. Recall
the setup for quantum adiabatic evolution [47]. Given an
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(a) TTS Scaling for 21-Weight Graphs b) TTS Scaling versus Number (c) TTS Scaling for the SK Model
for Selected Numbers of DAQC Layers of DAQC Layers for a 20-Layer DAQC
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FIG. 7: Scaling of DAQC in solving MaxCut problems. The TTS results are obtained by simulating the QAOA algorithm, using pre-tuned
adiabatic scheduling rather than optimizing its parameters variationally. (a) TTS scaling for a 4-, 10-, 20-, and 50-layer DAQC as the problem
size grows from 10 to 20 vertices. A best-fit line (dashed) is drawn to the median of the TTSs of the 1000 instances of each size, whose IQR
ranges are represented using coloured bars. The equation of this linear regression is given by ln(TTS) = mn+ b, where n is the problem size.
(b) Slope of the linear regression for a range of layers. The best scaling for DAQC on these 21-weight MaxCut instances is observed at 20 layers.
(c) TTS scaling for the SK model, when using a 20-layer DAQC. A best-fit linear-regression is drawn to the median of the TTSs of the 1000
instances for each size.

initial Hamiltonian H0 and a target Hamiltonian H1, we
consider the time-dependent Hamiltonian

H(t) = s(t)H1 + (1− s(t))H0, t ∈ [0, T ]

over a total annealing time T , where the function s(t) is
an increasing schedule satisfying s(0) = 0 and s(T ) = 1.
The time-dependent Hamiltonian H(t) is then applied to
the ground state of H0. Let ψ(t) denote the wavefunction
at time t, so that ψ(0) is the ground state of H0 and ψ
evolves according to the Schrödinger equation

ψ̇ = −i
(
s(t)H1 + (1− s(t))H0

)
ψ.

We use Trotterization to approximate the prepared state
ψ(T ). Let

ck :=

∫ kT/p

(k−1)T/p

s(t) dt and bk :=

∫ kT/p

(k−1)T/p

(1− s(t)) dt.

Then,

ψ(T ) ≈ e−ibpH0e−icpH1 · · · e−ib1H0e−ic1H1ψ(0), (13)

and this approximation becomes exact in the limit as
p→∞.

The Hamiltonians H0 and H1 are both chosen to have
a Frobenius norm equal to 1. We divide both HM and HP

by their corresponding norms, which can easily be calcu-
lated, as each Hamiltonian is a sum of the orthogonal
Pauli terms

H0 =
1

‖HM‖
HM = − 1√

n

∑
i

Xi

0 T

Time

0

1

c1

b1

c2

b2

c3

b3

c4

b4

c5

b5

c6

b6s(t)

FIG. 8: Trotterization of adiabatic evolution into p = 6 layers. The
integrals computing bk and ck yield the coefficients for H0 and H1,
respectively.

and

H1 =
1

‖HP‖
HP =

1√∑
i,j J

2
ij

∑
i,j

JijZiZj .

Thus,

γk =

∫ kT/p

(k−1)T/p

s(t)

‖HP‖
dt and βk =

∫ kT/p

(k−1)T/p

1− s(t)
‖HM‖

dt.

Empirically, we found that enforcing this Frobenius nor-
malization has yielded a very well-performing schedule
for QAOA for multiple problem types. The theoretical
basis for this is yet to be fully understood.

The schedule s(t) should have an “inverted S”
shape [48, 49] in order to handle the squeezed energy
gap in the middle. We take s(t) to be a cubic function
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with the general form

s(t) =
t

T
+ a · t

T

(
t

T
− 1

2

)(
t

T
− 1

)
(14)

for a free parameter a. When a = 0, s(t) is a straight lin-
ear path. When a = 4, s(t) is a curved path with a slope
of 0 at t = T/2. We found by empirical means that a = 4
and T = p(1.6+0.1n) are the best hyperparameters. See
Appendix B for more details.

We also compare the TTS for DAQC to the TTS for
Breakout-Local Search (BLS), a classical search algo-
rithm. For each graph instance, 20 runs of BLS were
performed, and runtimes were averaged rto obtain the
TTS. The algorithm’s runtime for each run was capped
at 0.1 seconds, although the minimum value was almost
always found within that time. Fig. 9 demonstrates that
the TTS for DAQC shows no significant correlation with
the TTS for BLS.

10 5 10 4 10 3

DAQC TTS

10 4

10 3

10 2

BL
S 

TT
S

10 vertices
11 vertices
12 vertices
13 vertices
14 vertices
15 vertices
16 vertices
17 vertices
18 vertices
19 vertices
20 vertices

FIG. 9: Scatter plot of DAQC-TTS versus BLS-TTS indicates there is
no significant correlation between the difficulty of an instance for
DAQC versus the difficulty of an instance for Breakout-Local Search.

B. Challenges Encountered when Using the
Variational Approach

The QAOA protocol usually includes an optimization
loop which learns better parameters (γ, β) by using the
data from already-performed shots. However, we found
that including an optimization step did not improve the
total TTS for the following reasons, and therefore did not
include the step in our analysis. The R99 is impossible
to measure without knowledge of the ground state, and
therefore any optimization routine must instead rely on
energy measurements. A common approach is to use the
“expected energy”, 〈ψ(γ, β)|HP |ψ(γ, β)〉, which is esti-
mated by averaging over the multiple shots taken with
the parameters (γ, β). This approach suffers from two
limitations. First, we must use a large number of shots

to accurately estimate the expected energy, which makes
the optimization step costly. Second, the expected energy
is an imperfect stand-in for R99, and therefore optimiza-
tion typically offers little to no improvement upon the
annealing-inspired parameter schedule. See Appendix C
for more details.

IV. SCALING OF DH-QMF

We now consider using Dürr and Høyer’s algorithm
for quantum minimum finding (DH-QMF) [20] to find
the ground state of an Ising Hamiltonian correspond-
ing to a MaxCut problem. Given a real-valued func-
tion E : S → R on a discrete domain S of size N = |S|,
DH-QMF finds a minimizer of E (out of the possibly

many) using O(
√
N) queries to E. In our case, the do-

main S is the set of all spin configurations of a classical
Ising Hamiltonian on n sites (N = 2n), and the func-
tion E maps each spin configuration to its energy. The
DH-QMF algorithm is a randomized algorithm, that is,
it succeeds in finding the optimal solution only up to a
(high) probability. The probability of failure of DH-QMF
can be made arbitrarily small without changing the men-
tioned complexity. A schematic illustration of DH-QMF
is shown in Fig. 10, and additional technical details can
be found in Appendix D.

FIG. 10: Schematic illustration of the Dürr–Høyer algorithm for
quantum minimum finding /mbox(DH-QMF) applied to searching for
a spin configuration corresponding to the energy minimum (ground
state). The possible spin configurations are labelled by the indices
y ∈ {0, . . . , 2n − 1}. The algorithm starts by choosing uniformly at
random an initial guess for the “threshold index” y, whose energy
E(y) serves as a threshold: solutions to the problem cannot have an
energy value larger than this threshold. The main step of the
algorithm is a loop consisting of Grover’s search for a spin
configuration with an energy value strictly smaller than the threshold
energy, followed by a threshold-index update. This loop needs to be
repeated many times until the threshold index eventually holds the
solution with a probability of success higher than a given target lower
bound, say, e.g., psucc = 0.99. The final step returns the threshold
index as output. A key element of the Grover’s search subroutine is
an oracle which marks all states whose energies are strictly smaller
than the threshold energy. Note that Grover’s search may fail to
output a marked state.
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Given an n-spin Ising Hamiltonian

H = −
∑

0≤i<j≤n−1

JijZiZj (15)

corresponding to an undirected weighted graph of size n,
its N = 2n energy eigenstates can be labelled by the inte-
ger indices 0 ≤ y ≤ N−1, with the corresponding energy
eigenvalues E(y). The index y associated with a compu-
tational basis state |y〉 = |η0〉⊗· · ·⊗|ηn−1〉 represented by
the classical bits ηj ∈ {0, 1} is the binary representation

y =
∑n−1
j=0 ηj2

j of the bit string (η0, . . . , ηn−1).
The algorithm starts by choosing uniformly at random

an index y ∈ {0, . . . , N − 1} as the initial “threshold in-
dex”. The threshold index is used to initiate a Grover’s
search [19, 50]. The Grover subroutine searches for a la-
bel y? whose energy is strictly smaller than the threshold
value E(y). We measure the output of Grover’s search
and (classically) ascertain whether the search has been
successful, E(y?) < E(y), in which case we (classically)
update the threshold index from y to y?, and then con-
tinue by performing the next Grover’s search using the
new threshold. The threshold is not updated if Grover’s
search fails to find a better threshold.

In this paper, we assume a priori knowledge of a hy-
perparameter we call the number of “Grover iterations”
(see Section IV B) inside every Grover’s search subrou-
tine that guarantees a sufficiently small failure probabil-
ity. However, the practical scheme for using DH-QMF
consists of multiple trials of Grover’s search and iterative
updates to the threshold index. We terminate this loop
when the Grover subroutine repeatedly fails to provide
any further improvement to y and the probability of the
existence of undetected improvements drops below a suf-
ficiently small value. Finally, we return the last threshold
index as the solution. As shown in [20], the overall re-
quired number of Grover iterations needed to find the
ground state with sufficiently high probability, say 1/2,

is in O(
√
N).

A. Time-to-Solution Benchmark for DH-QMF

We investigate the scaling of the time required by
DH-QMF to find a solution of weighted MaxCut in-
stances with a 0.99 success probability, assuming an op-
timistic scenario that is explained in Section IV B. This
runtime is analogous to the TTS measure defined in pre-
vious sections for the heuristic algorithms of the MFB-
CIM and DAQC and we therefore call this runtime a TTS
as well. For each instance of the problem we have esti-
mated an optimistic lower bound on the runtime of the
quantum algorithm with numbers of Grover’s iterations
in DH-QMF set (ahead of any trials) to achieve an at
least 0.99 success probability. As this optimal number
of Grover’s iterations is dependent on the specific Max-
Cut instance, we consider this an optimistic bound on
performance of DH-QMF. We use the same test set of

randomly generated 21-weight MaxCut instances as in
previous sections.

Our results are illustrated in Fig. 11. The optimistic
values for the TTS are in the range of orders of magni-
tude of 1.0 milliseconds – 1.0 seconds for the considered
range of the number of vertices, 10 ≤ n ≤ 20, using the
same set of assumptions for the quantum processor as in
Assumption 1.

Our estimates for the runtime of the quantum algo-
rithm are obtained as follows. We note that DH-QMF
consists of a sequence of Grover’s search algorithms. The
total runtime of DH-QMF is therefore the sum of the run-
times of the quantum circuits, each of which corresponds
to a Grover’s search. The runtime of each such circuit
is calculated using the depth of that circuit, which is the
length of the longest sequence of native operations on
the quantum processor (i.e., qubit preparations, single-
qubit and two-qubit gates, and qubit measurements) in
that circuit, assuming maximum parallelism between in-
dependent operations. This path is also known as the
“critical path” of a circuit. The runtime of the circuit
is therefore identical to the sum of the runtimes of the
operations along the critical path, with a contribution of
1.0 microsecond in total for both qubit initialization and
measurement, and 10 nanoseconds for any quantum gate
operation along the critical path.

The asymptotic scaling of the TTS is identical to the
scaling of the circuit depth, which is

Θ
(√

2n
(
n2 log log n+ (log n)2 + n

))
, (16)

as shown in Appendix D. Here the Θ
(√

2n
)

contribu-
tion is that of the number of Grover iterations (iden-
tical to the query complexity of Grover’s search), while
the poly(n, log n, log log n) factors are the contribution of
each single Grover iteration consisting of an oracle query
with implementation cost Θ

(
n2 log log n+ (log n)2

)
and

the Grover diffusion with cost Θ (n). A nonlinear least-
squares regression toward this scaling is shown in Fig. 11
for both the 21-weight and the SK model problem in-
stances, respectively. Note that the contributions of loga-
rithmic terms are significant only for small problem sizes.

Alongside the optimistic runtime, we have also com-
puted lower bounds on the number of quantum gates,
including concrete counts for the overall number of single-
qubit gates, two-qubit Cnot gates, and T gates (see
Fig. 12). Our circuit analysis in Appendix D yields the
gate complexity

Θ
(√

2n
(
n2 log n log log n+ (log n)2 + n

))
. (17)

Our resource estimates have been generated using Pro-
jectQ [51].

B. The Optimal Number of Grover Iterations

In what follows, we explain how the algorithm can al-
ways be designed such that the output is indeed a ground
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(a) TTS for 21-Weight Problem Instances (b) TTS for SK Model Instances
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FIG. 11: Scaling of Dürr and Høyer’s algorithm for quantum minimum finding (DH-QMF) in solving MaxCut. (a) Time-to-solution (TTS) for
21-weight problem instances. (b) TTS for the SK model instances. In both cases, for each value of the number of vertices in the range
10 ≤ n ≤ 20, DH-QMF has been emulated for 1000 (dark blue data) MaxCut instances (see main text). A non-linear least-squares regression
(orange curve) has been performed to fit the expected runtime scaling in Eq. (16), respectively, resulting in a sum of squared residuals

approximately 1.2× 10−4 seconds2 for 21-weighted instances and 3.30× 10−3 seconds2 for the SK model instances. A logarithmic scale has been
used to display the data and the regression fits. Note that the contributions from the logarithmic factors become more (less) significant for
smaller (larger) problem sizes.

(a) Single-Qubit Gates Count (b) Cnot Gate Count
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FIG. 12: Optimistic gate counts for DH-QMF in solving the MaxCut problem. For each value of the number of vertices in the range 10 ≤ n ≤ 20,
the DH-QMF algorithm was emulated for 1000 (blue data) 21-weight MaxCut instances, see main text. Concrete counts were conducted for the
(a) overall number of single-qubit gates, and (b) two-qubit CNOT gates. A non-linear least-squares regression (orange curve) has been performed
to fit the expected gate complexity given in Eq. (17), respectively. A logarithmic scale has been used to display the data and the regression fits.

state with a probability higher than any target lower
bound for the probability of success, for example, 0.99.

A key component of Grover’s search as part of QMF is
an oracle that marks every input state |x〉 whose energy
is strictly smaller than the energy corresponding to the
threshold index y (see Fig. 10). We call it the “QMF
oracle” and denote it by OQMF to distinguish it from the
“energy oracle” OE which computes the energy of a state
under the problem Hamiltonian. The oracle OQMF uses
an ancilla qubit initialized in the state |z〉 to store its
outcome

OQMF : |x〉 |z〉 7−→ |x〉 |z ⊕ f(x)〉 , (18)

where f(x) = 1 if, and only if, E(x) < E(y), and
f(x) = 0 otherwise. Here, ⊕ represents a bitwise XOR.
The QMF oracle is constructed from multiple uses of the

energy oracle OE and an operation that compares the
values held by two registers. Details of this construc-
tion can be found in Appendix D 2. The combined ef-
fect of querying OQMF followed by the Grover diffusion
(together forming the Grover iteration to be repeated

O
(√

2n
)

times) results in constructively amplifying the
amplitudes of the marked items while diminishing the
amplitudes of the unmarked ones.

When there are multiple solutions to a search prob-
lem, as is frequently the case in the Grover subroutine
of QMF, the optimal number of Grover iterations needed
to maximize the success probability depends on the num-
ber of marked items as well. Indeed, suppose we were to
have knowledge of the number of marked items t ahead
of time. Then, the optimal number of Grover iterations
could be obtained from the closed formulae provided in
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[50]:

℘succ = sin2 ((2m+ 1)θ) ,

℘fail = cos2 ((2m+ 1)θ) . (19)

Here, m is the number of Grover iterations, and θ is
defined by sin2 θ = t/N . Hence, the success probability
is maximized for the optimal number of Grover iterations
mopt = bπ/4θc. We also observe that after exactly mopt

iterations the failure probability obeys

℘fail ≤ sin2 θ = t/N,

which is negligible when t� N .
In practice, t and, consequently, mopt are often un-

known. Nevertheless, [50, Sec. 4 and Theorem 3] propose
a method to find a marked item with query complexity

O
(√

N/t
)

even when no knowledge of the number of

solutions is assumed.
To simplify the analysis for our benchmark in this pa-

per, we examine each MaxCut instance and assume t
is known every time Grover’s search is invoked. This
assumption provides a lower bound on the performance
of DH-QMF. In view of the previous discussion, having
knowledge of t allows us to compute mopt, ℘succ, and ℘fail.

We then boost the overall success probability of
Grover’s search to any target success probability pG by
repeating it K times, where K satisfies

pG ≤ 1− ℘Kfail . (20)

Moreover, if DH-QMF requires J non-trivial threshold
index updates in total, we must succeed in every boosted
Grover search (each including K Grover searches). The
probability of this event is thus at least p JG . Finally, let
us denote the target lower bound for the probability of
success of the overall DH-QMF algorithm by psucc. We
then must have

psucc ≤ p JG . (21)

We achieve a lower bound for K using Eqs. (20) and (21):

K ≥
log
(

1− p
1
J

succ

)
log℘fail

. (22)

Note that this number still depends on the optimal num-
ber mopt of Grover iterations. The remainder of this sec-
tion explains how the latter number is sampled for each
MaxCut instance via Monte Carlo simulation.

Given a weighted graph, we first generate the his-
togram of the sizes of all cuts in the graph. Examples
of such histograms are provided in Fig. 13. This cut-size
histogram allows us to perform a Monte Carlo simulation
of the progression of DH-QMF as follows. The DH-QMF
algorithm starts by choosing uniformly at random an ini-
tial cut C as the threshold index. The resulting energy
threshold is therefore sampled according to the cut-size
histogram. Grover search then attempts to find a larger

FIG. 13: Typical cut-size histograms of undirected random weighted
graphs with weights wk` = ±0.1j, where j ∈ {0, 1, . . . , 10}. Two
instances are shown for random graphs with n = 15 (left) and n = 20
(right) vertices. Note that, for a fully connected graph with n
vertices, the overall number of edges is n(n− 1)/2.

cut. The number of these cuts is t in the notation above,
and can be found if the cut-size histogram is known. Us-
ing Eq. (19), we can also compute the optimal number
mopt of Grover iterations needed to achieve the highest
possible success rate ℘succ in that search. We further-
more can now use Eq. (22) to predict the number K of
Grover searches needed to boost the success probability
to at least pG. The cut C is now replaced with a larger
cut also selected at random using the cut-size histogram,
and this simulation is repeated for the next iteration in
DH-QMF.

We repeatedly sample and update the threshold until
we find a maximum cut (i.e., at an iteration where t = 0).
At this point, we stop our Monte Carlo simulation (even
though in practice it will not be known that t has become
zero). For each sampling step j, we count the total num-
ber tj of states contributing to strictly greater cuts and

use it to calculate the optimal number m
(j)
opt of Grover it-

erations as well as the number of boosting iterations Kj

via Eq. (22).
We now obtain an optimistic TTS as well as an opti-

mistic gate count estimate using the formulae

TTS =

J∑
j=1

Kjm
[j]
opt ×Runtime, (23)

# gates =

J∑
j=1

Kjm
[j]
opt ×GateCount. (24)

Here, Runtime denotes the running time and GateCount

indicates the gate count for a single Grover iteration. In
Section IV A we provided optimistic estimates for the
number of single-qubit gates, Cnot gates, and T gates.
The quantum circuit implementation of a single Grover
iteration is presented in Appendix D.

V. COMPARISON OF THE THREE
ALGORITHMS

A direct comparison of the three algorithms for solv-
ing MaxCut is illustrated in Fig. 14. In Fig. 14 (a),
the median wall-clock TTS of DH-QMF, DAQC, and the
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closed-loop MFB-CIM are plotted as a function of prob-
lem size n for randomly generated 21-weight MaxCut in-
stances. The solid blue line indicates a best-fitting curve,
fCIM(n) = AB

√
n, for the closed-loop MFB-CIM, where

A = 121 nanoseconds and B = 2.21; the solid orange line
represents a best-fitting curve, fDAQC(n) = A′B′n, for a
20-layer DAQC, where A′ = 4.6 microseconds and B′ =
1.17; and the solid green curve represents a best-fitting

curve, fQMF(n) =
(
Ãn2 log log n+ C̃(log n)2 + D̃n

)
B̃n,

for DH-QMF, where B̃ =
√

2, and Ã, C̃, and D̃ are equal
to 17.3, 2.87×103, and −1.65×103 microseconds, respec-
tively.

In order to see how the performance of a closed-loop
MFB-CIM scales with increasing problem size, we solved
MaxCut problems with SK instances of problem sizes
n = 100, 200, . . . , 800. A total of 100 instances of the SK
model for each problem size were randomly generated.
Using a closed-loop MFB-CIM, we solved each instance
100 times to evaluate the success probability Ps of finding
a ground state and compute a wall-clock time to achieve a
success probability of ≥ 0.99. It is assumed that all-to-all
spin coupling is implemented in 10 nanoseconds, which
corresponds to a cavity round-trip time. The signal field
lifetime is 100 nanoseconds, that is, Ndecay = 10. We
used the discrete map Gaussian model to simulate such a
low-finesse machine. The results are shown in Fig. 14(b),
along with the predicted performance of DAQC and DH-
QMF for the SK model instances.

The minimum wall-clock TTS for the closed-loop
MFB-CIM at the optimized runtime tmax scales as an ex-
ponential function of

√
n, while those for DH-QMF and

DAQC scale as exponential functions of n. At a prob-
lem size of n = 800, the wall-clock TTS for the closed-
loop MFB-CIM is ∼ 10 milliseconds , while those for
DH-QMF and DAQC are ∼ 10120 seconds and ∼ 1050

seconds, respectively.

VI. CONCLUSION

In this paper, we have studied the scaling of two
types of measurement-feedback coherent Ising machines
(MFB-CIM) and compared this scaling to that of the
discrete adiabatic quantum computation (DAQC) and
the Dürr–Høyer algorithm for quantum minimum find-
ing (DH-QMF). We performed this comparative study
by testing numerical simulations of these algorithms on
21-weight MaxCut problems, that is, weighted Max-
Cut problems with randomly generated edge weights at-
taining 21 equidistant values from −1 to 1.

The MFB-CIM of the first type is an open-loop MFB-
CIM with predefined feedback control parameters and
the second is a closed-loop MFB-CIM with self-diagnosis
and dynamically modulated feedback control parameters.
The open-loop MFB-CIM utilizes the anti-squeezed X̂
amplitude near threshold under a positive pump ampli-
tude for finding a ground state but at larger problem

sizes the machine is often trapped in local minima. The
closed-loop MFB-CIM employs the squeezed X̂ ampli-
tude under a negative pump amplitude, in which a finite
internal energy is sustained through an external feedback
injection signal rather than through parametric amplifi-
cation. This second machine self-diagnoses its current
state by performing Ising energy measurement and com-
parison with the previously attained minimum energy.
The machine continues to explore local minima without
getting trapped even in a ground state. We observed
that for both the 21-weight MaxCut problems and the
SK Ising model, the closed-loop MFB-CIM outperforms
the open-loop MFB-CIM. One remarkable result is that
a low-finesse cavity machine realizes a shorter TTS than
a high-finesse one. This fact clearly demonstrates that
the dissipative coupling of the machine to external reser-
voirs is a crucial computational resource for MFB-CIMs.
The wall-clock TTS of the closed-loop MFB-CIM closely

follows TTS ≈ 4.32 × (1.34)
√
n

microseconds for the SK
model instances of size n ranging from 100 to 800, as-
suming a cavity round-trip time of 10 nanoseconds and
a 1/e signal amplitude decay time of 100 nanoseconds
(γs∆Tc = 0.1). The performance of the MFB-CIM shown
in Fig. 14 is already competitive against various heuristic
solvers implemented on advanced digital platforms such
as CPUs, GPUs, and FPGAs, in which massive paral-
lel computation is performed over many, many billions
of transistors [6, 7, 52–55]. Note that the results shown
in Fig. 14 assume one and only one OPO implemented
in the MFB-CIM as an active element. If a future MFB-
CIM were to implement multiple OPOs, parallel compu-
tation would become possible and its performance could
be greatly improved.

We have also studied the scaling of QAOA in solving
21-weight and SK model MaxCut problem instances.
We considered two schemes for optimizing the quantum
gate parameters of QAOA, denoted in the paper as (γ, β).
In the first scheme, we treat γ and β as hyperparameters
that follow a schedule inspired by the adiabatic theorem.
In this case, QAOA can be viewed as a Trotterization of
an adiabatic evolution from the ground state of a mixing
Hamiltonian to the ground state of a problem Hamilto-
nian. The second scheme views QAOA as a variational
(hybrid) quantum algorithm wherein a classical optimizer
is tasked with optimization of the parameters γ and
β. The variational scheme must perform repeated state
preparation and projection measurements to estimate the
ensemble averaged energy, which makes the optimization
step not only costly but vulnerable to the shot noise of
these measurements. Another disadvantage of the vari-
ational scheme is that optimizing the ensemble average
energy does not necessarily improve the TTS, which is
the more practical measure of performance for the algo-
rithm (see Appendix C for more details). As shown in
Fig. 16, the adiabatic schedules achieve very low R99 val-
ues, suggesting a challenging bound for the number of
shots allowed by the variational scheme to outperform
QAOA for this problem. In view of these considerations,
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(a) TTS Scalings for 21-Weight Graphs (b) TTS Scalings as Functions of
√
n for the SK Model
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FIG. 14: Comparison of the time-to-solution (TTS) scalings for the MFB-CIM, DAQC, and DH-QMF in solving MaxCut. (a) Wall-clock time of
a closed-loop CIM with a low-finesse cavity (γs∆Tc = 0.1), DAQC with an optimum number of layers (p = 20), and DH-QMF with an a priori
known number of optimum iterations versus problem size n. (b) TTS of the closed-loop CIM on the fully connected SK model for problem sizes
from n = 100 to n = 800, in steps of 100. For each problem size, the minimum TTS with respect to the optimization over tmax is plotted. In
comparison, the SK model TTSs are shown for 20-layer DAQC and DH-QMF for problem sizes ranging from n = 10 to n = 20. The straight,

lighter-blue line (a linear regression) for the CIM demonstrates a scaling according to AB
√

n. The lighter-orange and lighter-green best-fit curves
for DAQC and DH-QMF are extrapolated to larger problem instances, illustrating a scaling that is exponential in n rather than in

√
n. In both

figures, the shaded regions show the IQRs.

we used the adiabatic scheme to predict the performance
of QAOA for large problem sizes, in which case QAOA
is considered a pre-tuned DAQC algorithm. In contrast,
we note that the quantum state in an MFB-CIM survives
through repeated measurements, as the measurements
performed on the OPO pulses are not direct projective
measurements but indirect approximate measurements.
These measurements perturb the internal quantum state
of the OPO network but do not completely destroy it.
As a result, the above drawback of a variational scheme
for QAOA does not apply to the closed-loop MFB-CIM.
The wall-clock TTS of QAOA with hypertuned adiabatic
schedules (in this case viewed as a DAQC algorithm) is
well-represented by TTS ≈ 4.6 × (1.17)n microseconds.
As shown in Fig. 14, extrapolating this trend suggests
that DAQC will perform poorly compared to MFB-CIM
as the problem sizes increase due to an exponential de-
pendence on the number, n, of vertices in the MaxCut
problem compared to an exponential growth with a

√
n

exponent in the case of MFB-CIM.

Finally, we have also studied the scaling of DH-QMF
for solving 21-weight and SK model MaxCut problems.
As this algorithm is based on Grover’s search, it performs
Õ(
√

2n) Grover iterations, implying it makes a number of
queries, of the same order, to its oracle. The algorithm
also iterates on multiple values of a classical threshold
index; however, this does not change the dominating fac-
tors in the scaling of the algorithm. We have shown that
the wall-clock TTS of DH-QMF is well-approximated by

TTS ≈ 17.3 × 2n/2n2 log logn microseconds when ex-
trapolated to larger problem sizes. As shown in Fig. 14,
DH-QMF requires a computation time that is many or-
ders of magnitude larger than that for either DAQC
or MFB-CIM. This comparatively poor performance of
DH-QMF can be traced back to the linear amplitude
amplification in the Grover iteration in contrast to the
exponential amplitude amplification at the threshold of
the OPO network. Our study thus leaves open the ques-
tion of whether there exist optimization tasks for which
Grover-type speedups are of practical significance.
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APPENDICES

Appendix A: The Discrete Map Gaussian Model of
CIM

In this Appendix, we summarize the discrete-map
Gaussian model of the CIM presented in [44], and we
adapt the feedback step to include the dynamic feed-
back control used for the closed-loop MFB-CIM. This
discrete-map model is used to study the optimization
performance of the MFB-CIM in Section II C. In the
discrete Gaussian quantum model of MFB-CIM, the den-
sity operator of the i-th OPO pulse is fully characterized
by the mean amplitude µi and covariance matrix Σi de-
fined by Eqs. (9) and (10). The total density operator
before all pulses start their `-th round trip is expressed
by ⊗ni=1ρ̂(µi(`),Σi(`)). Propagation of the state of the
i-th pulse through `-th roundtrip from ρ̂(µi(`),Σi(`)) to
ρ̂(µi(`+ 1),Σi(`+ 1)) is described by performing the fol-
lowing discrete maps consecutively.

1. Background linear loss: The lumped background
linear loss transforms the density operator as

ρ̂(µi,Σi) 7→ trc
(
B
[
ρ̂(µi,Σi)⊗ ρ̂(0c,Σ

0
c)
])
, (A1)

where Σ0
c = diag(1/2, 1/2) is the covariance of a coherent

state. The beamsplitter map B is defined by

B [ρ̂(µ,Σ)] = ρ̂(Sµ, SΣST), (A2)

S =

t 0 −r 0
0 t 0 −r
r 0 t 0
0 r 0 t

 . (A3)

Here, t =
√

1− r2 is the amplitude transmission coeffi-
cient of a fictitious beamsplitter which represents back-
ground linear loss. Physically, ρ̂(0c,Σ

0
c) is a reservoir

vacuum state and it is traced out after mixing with the
signal pulse at the beamsplitter.

2. Parametric amplification/deamplification during
OPO crystal propagation: The propagation through
a second-order nonlinear crystal with the pump pulse
transforms the density operator as

ρ̂(µi,Σi) 7→ trb

[
χ
(
ρ̂(µi,Σi)⊗ ρ̂(µb,Σ

0
b)
)]
, (A4)

where µb and Σ0
b = diag(1/2, 1/2) describe the initial

condition of the (Gaussian) pump pulse, and the map χ
abstractly represents their joint propagation through the
crystal, that is,

χ : ρ̂(µi,Σi)⊗ ρ̂(µb,Σ
0
b) 7→ ρ̂(µi,b,Σi,b), (A5)

where ρ̂(µi,b,Σi,b) is a joint two-mode Gaussian state of
the signal and pump at the output. This joint output is
determined by the equations of motion for the mean-field

and covariance matrix:

d〈X̂i〉
dt

= ε〈X̂b〉〈X̂i〉+ ε〈δX̂bδX̂i + δP̂bδP̂i〉 (A6)

d〈X̂b〉
dt

= − ε
2
〈X̂i

2
〉 − ε

2
〈δX̂i

2
− δP̂i

2
〉 (A7)

d〈δX̂i
2
〉

dt
= 2ε〈X̂b〉〈δX̂i

2
〉+ 2ε〈X̂i〉〈δX̂bδX̂i〉 (A8)

d〈δP̂i
2
〉

dt
= −2ε〈X̂b〉〈δP̂i

2
〉+ 2ε〈X̂i〉〈δP̂bδP̂i〉 (A9)

d〈δX̂b
2
〉

dt
= −2ε〈X̂i〉〈δX̂bδX̂i〉 (A10)

d〈δP̂b
2
〉

dt
= −2ε〈X̂i〉〈δP̂bδP̂i〉 (A11)

d〈δX̂bδX̂i〉
dt

= ε〈X̂i〉〈δX̂b
2
− δX̂i

2
〉+ ε〈X̂b〉〈δX̂bδX̂i〉

(A12)

d〈δP̂bδP̂i〉
dt

= ε〈X̂i〉〈δP̂b
2
− δP̂i

2
〉 − ε〈X̂b〉〈δP̂bδP̂i〉

(A13)

Here ε is the parametric coupling rate defined by the

Hamiltonian H = i~ε2 (b̂â†
2− b̂†â2), where â and b̂ are sig-

nal and pump annihilation operators. We assume that
the input state into the crystal satisfies 〈P̂i〉 = 〈P̂b〉 = 0
(i.e., there is no coherent excitation along the quadrature-

phase) and 〈{δX̂i, δP̂i}〉 = 〈{δX̂b, δP̂b}〉 = 0 (both the
signal and pump have no correlation between in-phase
and quadrature-phase fluctuations). Note that 〈P̂i〉 =

〈P̂b〉 = 0 is satisfied at all times under the above con-
ditions. The defined map χ thus describes all such ef-
fects as linear parametric amplification/deamplification,
signal-pump entanglement formation, and back conver-
sion from the pump to the signal.

3. Outcoupling and homodyne detection: The outcou-
pling of the internal signal pulse is described by the map

ρ̂ (µi,Σi) 7→ ρ̂ (µi,h,Σi,h)

= Bout

[
ρ̂ (µi,Σi)⊗ ρ̂

(
0h,Σ

0
h

)]
, (A14)

where the beamsplitter map Bout is defined by Eqs. (A2)
and (A3) with an outcoupling rate of rout. In Eq. (A14),
a probe mode h is prepared in a vacuum state and mixed
with the signal pulse. This process creates a joint corre-
lated state (entangled state) between the internal pulse
and external (outcoupling) pulse. Suppose a homodyne
measurement for the outcoupled pulse reports a result
mi(l) for the i-th signal pulse at the `-th round trip.
Such an indirect approximate measurement projects the
internal state to a new state by the map

ρ̂ (µi,h,Σi,h) 7→ H [ρ̂ (µi,h,Σi,h)]

= ρ̂
(
µ

(mi)
i ,Σ

(mi)
i

)
, (A15)
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where the homodyne detection map H is defined by

µ
(mi)
i = µi +

(
wi − µh

ΣXX

)
vX (A16)

Σ
(mi)
i = Σi −

vXvX
T

ΣXX
. (A17)

Here, vX is the X off-diagonal component (the degree
of signal-probe correlation) of the matrix Σi,h and ΣXX
is the X diagonal element of Σh. The second terms of
the right-hand sides of Eqs. (A16) and (A17) express the
mean-field shift and variance reduction induced by the
homodyne measurement.

4. Feedback injection: We finally implement the Ising
coupling by applying the displacement operation for the
internal pulse amplitude based on the measurement re-
sults of the `-th round trip, mj(`), for all pulses except
for the i-th pulse. The displacement magnitude is given
by

vi(`) = ei(`)
∑
j 6=i

Jijmj(l), (A18)

where ei(`) is the feedback-field amplitude of the `-th
round trip which is determined by the equation of motion,
Eq. (5), for the closed-loop CIM. The feedback injection
map is thus determined by

ρ̂ (µi,Σi) 7→ Dvi [ρ̂ (µi,Σi)] = ρ̂ (µi + vi,Σi) . (A19)

The above four steps are applied to all pulses
(i = 1, . . . , n), completing one round trip through the
CIM cavity.

Appendix B: Hyperparameter Tuning for QAOA
Parameter Schedules

As described in Section III A, we have a recipe for
generating DAQC parameter schedules for any problem
Hamiltonian HP and number of layers p. We consider
two hyperparameters for these schedules:

• The number L = T/p is the evolution time in each
Trotterized layer of the associated annealing sched-
ule. A larger value of L corresponds to a slower and
therefore better associated annealing schedule, but also
brings along a greater Trotterization error;

• The number a is the coefficient of the cubic term in
the adiabatic schedule. When a = 0 the schedule is
linear, and when a = 4 the schedule is cubic, with
f ′(T/2) = 0. We therefore only consider a ∈ [0, 4],
because for a > 4 the schedule would be decreasing at
t = T/2.

Here, we compile our results on the performance of
QAOA with cubic schedules for various values of the hy-
perparameters a, L, and p. In Figs. 15 to 17, the horizon-
tal axis displays the number of vertices for the problem
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FIG. 15: R99 of the good initial QAOA parameters at p = 4 layers for
various values of a and L, on all 1000 graph instances of each size
ranging from 10 to 20.

instance, and the vertical axis displays the R99 or TTS
(in logarithmic scale). Each blue dot represents a single
problem instance. All plots depict a total of 11,000 prob-
lem instances varying from 10 to 20 nodes in size. Each
black point represents the geometric mean of all values
of R99 or TTS for problem instances of a given size. Fi-
nally, the red line indicates the best linear fit to the black
points. The equation corresponding to the best-fit line
is written in each subplot, where n is the number of ver-
tices.

We empirically found that a value of L between 2.6
and 3.6 worked best. In Fig. 15, we plot the R99 values
of the good parameter schedule with hyperparameters
a ∈ {0, 2, 4} and L ∈ {2.8, 3.0, 3.2, 3.4, 3.6}. Note that
a = 4 (a cubic schedule with a derivative of 0 at the in-
flection point) outperforms a = 0 (a linear schedule). We
observed that, as the number of vertices n increases, the
optimal value of the scaling constant L increases. There-
fore, our tuned hyperparameter value used in Figs. 16
and 17 is L = 1.6 + 0.1n.

In Figs. 16 and 17, we present the scaling of a linear
schedule opposite to that of a cubic schedule. As the
number of layers increases, performance as measured by
R99 improves, as expected. However, with more layers,
more time is required to perform a single circuit shot,
and therefore the scaling of TTS is actually worse at 50
layers than it is at 20 layers. For large numbers of layers,
the linear schedule and cubic schedule perform similarly,
which is expected because both are Trotterizations of a
very slow adiabatic schedule.

Appendix C: Challenges of Variational QAOA

When QAOA parameter schedules are tuned variation-
ally, the energy measurements from the quantum device
are used to decide the next parameters to try via a hy-
brid quantum–classical process. A single “shot” with
parameters (γ, β) consists of running the QAOA circuit
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once with parameters (γ, β), and measuring the energy
of the prepared state |ψ(γ, β)〉, which destroys the pre-
pared state and returns a single measurement outcome.
We perform a large number of shots using (γ, β), and the
results are averaged to estimate the expected energy

EE(γ, β) := 〈ψ(γ, β)|HP|ψ(γ, β)〉. (C1)

This expected energy is treated as a loss function which is
minimized by a classical optimizer. This approach suffers
from two major challenges.

Firstly, we want parameters (γ, β) which minimize the
R99, rather than the expected energy. Although these
two loss functions are related, they are not perfectly cor-
related, and this difference becomes more apparent as we
move closer to the parameters which minimize R99. Un-
fortunately, it is impossible to optimize the ansatz with
respect to R99, as this would require knowledge of the
ground state.

Secondly, because projective measurements are
stochastic, our estimate of the expected energy is approx-
imate, and this makes parameter optimization difficult.
To overcome this issue, we would need to use a large num-
ber of shots per point (γ, β), which makes the variational
algorithm costly.

In Fig. 18, we illustrate the implications of the first
challenge. We consider a four-layer QAOA circuit on
graphs of size 10, 15, and 20. For each graphG the follow-
ing analysis is performed. (i) The cubic schedule θG (see

FIG. 16: R99 and TTS of a linear schedule for 10 ≤ n ≤ 20,
p ∈ {4, 10, 20, 50}, with hyperparameters a = 0.0 and L = 1.6 + 0.1n.
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Section III A) is found and its R99 is calculated. (ii) The
Nelder-Mead method is used to optimize the expected
energy, with its parameter schedule initialized as θG and
given access to 100 perfect evaluations of expected energy
(which ordinarily can only be approximated). The R99

of the result is divided by the R99 of the cubic schedule,
and these ratios have been plotted in red. Finally, (iii)
the Nelder–Mead method is used to optimize R99, with
a schedule initialized with θG and access to 100 perfect
evaluations of R99 (which is ordinarily impossible to cal-
culate). The R99 of the result is divided by the R99 of
the cubic schedule, and these ratios have been plotted in
blue. For better visibility, the graph instances along the
x-axis have been sorted by the y-values of the red points.
We observe that even with perfect estimation of the ex-
pected energy, optimization results in a worse final R99

in 15 to 40 percent of graph instances. This is the case
despite the fact that the cost (in shots) of performing this
optimization has been discarded. The effect of including
the cost would have been substantial.

Appendix D: Grover’s Search as a Subroutine
of DH-QMF

Grover’s search algorithm [18, 19] has been extensively
studied and applied since its invention more than twenty

FIG. 17: R99 and TTS of a cubic schedule for 10 ≤ n ≤ 20,
p ∈ {4, 10, 20, 50}, with hyperparameters a = 4.0 and L = 1.6 + 0.1n.
The performance is better than that of the linear schedule for shallow
circuits, but stops improving as the number of layers becomes larger.
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FIG. 18: Plot depicting the fraction of the baseline R99 achieved
when optimizing for expected energy with no shot noise (red) versus
optimizing for R99 (blue). Baseline R99 (black) is given by the cubic
parameter schedule, as described in Section III A. Even when shot
noise is absent, optimizing for expected energy can increase the R99

about a third of the time, as is evidenced by the fact that a third of
the red points are above the black line. We performed this
optimization using 100 function evaluations using the Nelder–Mead
method, and due to imperfect optimization, a few blue points landed
above the red curve. The x-axis is the graph instance number from 0
to 199, where graphs have been sorted according to the y-value of the
red point.

years ago. This appendix provides more details with a
focus on its implementation as a subroutine of DH-QMF.
In Appendix D 1, we start with a brief review of how
Grover’s search algorithm works. In Appendix D 2, we
expand on the quantum circuits used to implement the
QMF oracle, which is required when Grover’s search is
employed as a subroutine of DH-QMF, and explain the
contributions to its resource requirements.

1. A Brief Review of Grover’s Search Algorithm

The circuit of Grover’s search algorithm is illustrated
in Fig. 19. The quantum circuit takes as inputs
an n-qubit register vertex and a single-qubit regis-
ter flag, where n = dlog2Ne. The vertex regis-
ter is used to encode the possible spin configurations
(and any superpositions of them); it is initialized in the

state |0〉⊗n and transformed into a uniform superposition
1√
2n

∑2n−1
x=0 |x〉vertex ∈

(
C2
)⊗n

by applying a Hadamard

gate (denoted by H) to each qubit. The flag qubit is
prepared in the state |−〉 ≡ 1√

2
(|0〉 − |1〉) = HX |0〉.

Grover’s search is implemented by repeatedly applying
the “Grover iterations” a number of times specified by
m. After m Grover iterations, the register vertex is
measured in the computational basis. The measurement
result (n classical bits) is intended to yield a solution to
the problem.

The effect of the Grover iteration is the combined ef-
fect of an oracle query followed by the Grover diffusion.

FIG. 19: Quantum circuit for Grover’s search. The key components
are an oracle, which marks the solution states, and the Grover
diffusion, which implements a reflection about the mean amplitude.
The composition of the oracle followed by Grover diffusion forms the

so-called Grover iteration, which is repeated m ∈ O
(√

2n
)

times.

Here, H denotes the Hadamard gate.

To explain the key role of the quantum oracle, it us
useful to formulate the search problem as follows. Let
{x1, . . . , xN} denote the set of the N unordered items.
We define a classical function f : {x1, . . . , xN} → {0, 1}
such that f(x) = 1 if and only if x has the property we
are looking for, and f(x) = 0 otherwise. The problem
thus consists in finding an item x ∈ {x1, . . . , xN} such
that f(x) = 1. The quantum oracle Of corresponding to
the classical function f is a unitary implementation of f .
It is commonly defined as

Of : |x〉
vertex
|z〉

flag
7→ |x〉

vertex
|z ⊕ f(x)〉

flag
, (D1)

where z ∈ {0, 1} and ⊕ represents a bitwise XOR. If we
choose z = 0, the flag qubit outputs the value 1 if and
only if x is a solution to the search problem. We say the
oracle marks the solution states. The crucial property is
that the oracle can be queried on a superposition of N
input states, and to compute the corresponding function
values it needs to be queried only once:

1√
2n

2n−1∑
x=0

|x〉
vertex
|0〉

flag

Of7−→ 1√
2n

2n−1∑
x=0

|x〉
vertex
|f(x)〉

flag
.

(D2)
In Grover’s algorithm, we prepare the flag qubit in the
|−〉 state. The resulting effect is a “phase kick-back”,
which gives rise to a minus sign as a phase whenever the
input is a solution state:

|x〉
vertex
|−〉

flag

Of7−→ (−1)f(x) |x〉
vertex
|−〉

flag
. (D3)

Observe that the state of the flag qubit remains unaf-
fected and we effectively implement the transformation
|x〉

vertex
7→ (−1)f(x) |x〉

vertex
, which is the definition of a

“phase oracle”. However, the flag qubit plays a crucial
role in inducing this transformation. While the factor
(−1)f(x) seems like a global phase for a single term, it
becomes a relative phase for a superposition of inputs:

1√
2n

2n−1∑
x=0

|x〉
vertex
|−〉

flag

Of7−→ 1√
2n

2n−1∑
x=0

(−1)f(x) |x〉
vertex
|−〉

flag
.

(D4)
The following Grover diffusion implements a reflection

about the mean amplitude. If αx denotes the amplitude
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of the |x〉 component prior to applying the Grover diffu-
sion, the effect of the latter is αx 7→ 2ᾱ − αx, where
ᾱ := 1

N

∑
αx. Observe that the amplitudes of the

marked components (those that pick up a negative phase
after the oracle query) are amplified while the amplitudes
of all other components decrease. The combined effect
of an oracle query followed by the Grover diffusion thus
results in amplitude amplification of the solution states,
while shrinking the amplitudes of all other states in the
superposition. When repeated numerous times, the am-
plitudes of the solution states eventually become signifi-
cantly larger than those of the non-solution states. The
quadratic speedup with respect to classical search can
be understood as coming about from adding amplitudes

Ω
(

1√
N

)
to the marked items with each query, which re-

sults in an O
(√

N
)

convergence. This convergence rate

was shown by Grover to be also optimal. Hence, the

query complexity is actually Θ
(√

N
)

.

2. The QMF Oracle

The search for a ground state of an Ising Hamiltonian
H = −

∑
i<` Ji`ZiZ` (corresponding to an undirected

weighted graph with weights wi` = −Ji`) requires an or-
acle which marks all states whose energies are strictly
smaller than the energy corresponding to the latest up-
dated threshold index value, respectively, which we refer
to as the “QMF oracle” in this paper. Its quantum-
circuit implementation is shown in Fig. 20. Note that
here, instead of using the weights wk` = ±0.1j ∈ [−1, 1]
for j ∈ {0, 1, . . . , 10}, we take the weights to be the inte-
gers −10 ≤ wk` ≤ 10; this facilitates the quantum circuit
implementation of arithmetic operations without altering
the underlying MaxCut problem.

In addition to the n-qubit register vertex for encoding
the possible spin configurations and any superpositions
of them and a single-qubit register flag for holding the
result of the oracle, several other computational registers
as well as ancillae are required to reversibly compute the
energies E(x) and E(y) and compare their values. More
concretely, we need another n-qubit register to encode
the value y of the threshold index as a quantum state
|y〉. Furthermore, we need two computational registers
to store the computed values E(x) and E(y); we call
these registers “data(H)” to indicate that they hold the
computed data related to the Hamiltonian. Both are ini-
tialized such that they initially hold an integer Ẽ0 that is
an upper bound on the maximum possible absolute value
of an energy eigenvalue, Ẽ0 ≥ maxx |E(x)|. This energy
shift by a constant value allows us to have a nonnegative
energy spectrum, which facilitates the implementation of
the energy comparison. The maximum possible absolute
energy eigenvalue, maxx |E(x)|, is bounded by the prod-
uct of the total number of edges in the graph times the
maximum absolute edge weight in the weighted graph.

(a) Coarse profile of the QMF oracle:

(b) Energy oracle OE :

FIG. 20: Quantum oracle as a key component of the Grover step as
part of DH-QMF. The oracle marks every state whose energy is
strictly smaller than the threshold value E(y), which is computed
given the latest threshold index y. The result is recorded in a
single-qubit flag: given its input state |z〉 (where z ∈ {0, 1}), the
oracle outputs |z⊕ f(x)〉, where f(x) = 1 if, and only if, E(x) < E(y),
and f(x) = 0 otherwise. (a) The circuit consists of several queries to
the energy oracle OE , which reversibly computes the energy
corresponding to a given input state, and applications of a unitary
module called “Compare”, which compares the values held by two
registers and records the result (0 or 1) in a single-qubit ancilla. To
infer if E(x) < E(y) for a given input |x〉, we prepare the quantum
state |y〉 corresponding to the known threshold index y, then
independently compute E(x) and E(y) by separately employing OE ,
respectively, and compare their values using “Compare”. The
computational registers for holding the energy values are initialized in
|Ẽ0〉, where Ẽ0 is a constant energy shift chosen so as to avoid
negative energies. If E(x) < E(y) is TRUE, a 1 is recorded in an
ancilla qubit that was initialized in |0〉; the ancilla remains unaltered
otherwise. Using a Cnot gate, we copy out the result of the
comparison to the single-qubit flag and reverse the whole circuit
producing this result. (b) OE is implemented by serially executing the
shown circuit template for every vertex pair (i, `). Depending on
whether vertex[i] and vertex[`] carry the same or different values, we
respectively subtract or add the value Ji` in the data(H) register.

The registers data(H) must thus be able to store a value
twice as large as this bound. Since generic weighted
graphs have full connectivity, the total number of edges
in such graphs is

(
n
2

)
= n(n− 1)/2, where n is the num-

ber of vertices, while the maximum absolute edge weight
in our analysis is max(i,`) |wi`| = 10. Hence, we may

use Ẽ0 := 10
(
n
2

)
= 5n(n − 1) and choose the registers

data(H) to be of size dlog2 (10n(n− 1))e ∈ O(log n).

The energy values E(x) and E(y) are computed us-
ing two separate energy oracles, whose quantum cir-
cuit implementation is provided in Fig. 20(b). For
a given input |x〉 = |ξ0〉 ⊗ · · · ⊗ |ξn−1〉 held by the
vertex register, we serially execute the shown circuit
template for every vertex pair (i, `) in the graph whose
edge ei` is nonzero. Each such circuit subtracts or
adds the value Ji` in the data(H) register, depend-
ing on whether ξi = ξ` or ξi 6= ξ`, respectively, effec-
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tively contributing the term (−1)ξi(−1)ξ` (−Ji`) to the
overall energy. The series for all pairs of vertices ac-
cumulates the sum

∑
ij(−1)ξi(−1)ξ` (−Ji`), which to-

gether with the initial value Ẽ0 results in the value
E(x) = Ẽ0 −

∑
i`(−1)ξi(−1)ξ`Ji` held by the data(H)

register as output of the energy oracle OE . Similarly,
we obtain the value E(y) = Ẽ0−

∑
i`(−1)ηi(−1)η`Ji` for

the quantum state |y〉 = |η0〉⊗· · ·⊗|ηn−1〉 corresponding
to the threshold index y. For generic weighted graphs
with full connectivity, this serial implementation con-
tributes a factor O(n2) to the overall circuit depth scal-
ing. Moreover, there is an additional contribution from
the arithmetic operations needed to implement addition
and subtraction of the constant integer Ji` within the
data(H) register. Our circuit implementations and re-
source estimates have been obtained using projectQ [56].
The implementation of addition or subtraction of a con-
stant c, that is, |E〉 7→ |E ± c〉, in projectQ [51] is based
on Draper’s addition in Fourier space [57], which allows
for optimization when executing several additions in se-
quence, which applies to our circuits. Due to cancella-
tions of the quantum Fourier transform (QFT) and its
inverse, QFT QFT−1 = 1, for consecutive additions or
subtractions within the sequence given by the serial ex-
ecution of circuits shown in Fig. 20(b), the overall se-
quence contributes a multiplicative factor scaling only
as O(log log n) to depth, and a multiplicative factor in
O(log n log log n) to the gate complexity. To understand
these contributions, recall that the registers data(H) are
of size O(log n). The remaining initial QFT and the fi-
nal inverse QFT, which transform into and out of the
Fourier space in that scheme (cp. [51]), contribute an
additional additive term O

(
(log n)2

)
to both the depth

and the gate complexity of the overall sequence. Hence,
the implementation of the energy oracle OE contributes
the factors O(n2 log log n+(log n)2) to the overall circuit
depth and O(n2 log n log log n + (log n)2) to the overall
gate complexity.

The energy computation is followed by a unitary op-
eration called “Compare”, which compares the energies
E(x) and E(y). Using methods developed in [58], we can

implement this comparison by a circuit with a depth only
logarithmic in the number of qubits, that is, with a depth
in O(log log n), while its gate complexity is O(log n). An
additional single-qubit ancilla is used to store the result
of the comparison. Concretely, initialized in state |0〉, the
ancilla is output in the state |f(x, y)〉, where

f(x, y) =

{
0, if E(x) ≥ E(y)

1, if E(x) < E(y) .
(D5)

Using a Cnot gate, we copy out this result to the single-
qubit flag (bottom wire) and reverse the whole circuit
used to compute the result so as to uncompute the en-
tanglement with the garbage generated along the way.

In summary, the QMF oracle is a quantum circuit
of depth O

(
n2 log log n+ (log n)2

)
and gate complexity

O
(
n2 log n log log n+ (log n)2

)
. The Grover diffusion re-

quires an n-controlled Not gate to implement the re-
flection, which is a circuit of depth and gate complex-
ity both scaling as O(n) in terms of elementary gates.
Putting all contributions together, a single Grover iter-
ation in our implementation has a circuit of depth in
O
(
n2 log log n+ (log n)2 + n

)
, while its gate complexity

is O(n2 log n log log n+ (log n)2 + n). While we have not
explicitly shown it, we note that the growth rates of cir-
cuit depth and gate counts are lower-bounded by the
same scalings, meaning that in the above expressions we
may replace the O(·) notation by Θ(·).

As an additional final remark, we note that
it is possible to achieve a slightly better circuit
depth scaling for the Grover iteration, namely as
O
(
n+ (log n)3 + log log n

)
, by a parallel (instead of

serial) execution of the circuit components shown
in Fig. 20(b) pertaining to each vertex pair (i, `) in the
graph. However, this parallelization would come at an
unreasonably high additional space cost, as it would ne-
cessitate the use of n(n − 1) computational registers of
size O (log n) instead of only two. The number of qubits
required would scale as O

(
n+ n2 log n

)
. In contrast, our

serial implementation above requires only O (n+ log n)
qubits.
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