Boosting Quantum Annealer Performance via Quantum Persistence

By Hamed Karimi & Gili Rosenberg

We propose a novel method for reducing the number of variables in quadratic unconstrained binary optimization problems, using a quantum annealer to fix the value of a large portion of the variables to values that have a high probability of being optimal. The resulting problems are usually much easier for the quantum annealer to solve, due to their being smaller and consisting of disconnected components. This approach significantly increases the success rate and number of observations of the best known energy value in samples obtained from the quantum annealer, when compared with calling the quantum annealer without using it, even when using fewer annealing cycles. Use of the method results in a considerable improvement in success metrics even for problems with high-precision couplers and biases, which are more challenging for the quantum annealer to solve. The results are further enhanced by applying the method iteratively and combining it with classical pre-processing. We present results for both Chimera graph-structured problems and embedded problems from a real-world application.

Presented at: Adiabatic Quantum Computing Conference 2016 (AQC)
Journal reference: Quantum Information Processing – July 2017 

PDF    arXiv preprint

Most Recent Papers

Scaling Overhead of Locality Reduction in Binary Optimization Problems

By Elisabetta Valiante, Maritza Hernandez, Amin Barzegar, & Helmut G. Katzgraber Recently, there has been considerable interest in solving optimization problems by mapping these onto a binary representation, sparked mostly by the use of quantum annealing machines....

Quantum Multiple Kernel Learning

By Seyed Shakib Vedaie, Moslem Noori, Jaspreet S. Oberoi, Barry C. Sanders, & Ehsan Zahedinejad Kernel methods play an important role in machine learning applications due to their conceptual simplicity and superior performance on numerous machine learning tasks....

Variationally Scheduled Quantum Simulation

By Shunji Matsuura, Samantha Buck, Valentin Senicourt, & Arman Zaribafiyan Eigenstate preparation is ubiquitous in quantum computing, and a standard approach for generating the lowest-energy states of a given system is by employing adiabatic state preparation...