Combinatorial Optimization on Gate Model Quantum Computers: A Survey
By Ehsan Zahedinejad & Arman Zaribafiyan
The advent of quantum computing processors with the possibility to scale beyond experimental capacities magnifies the importance of studying their applications. Combinatorial optimization problems can be one of the promising applications of these new devices. These problems are recurrent in industrial applications and they are in general difficult for classical computing hardware. In this work, we provide a survey of the approaches to solving different types of combinatorial optimization problems, in particular quadratic unconstrained binary optimization (QUBO) problems on a gate model quantum computer. We focus mainly on four different approaches including digitizing adiabatic quantum computing, global quantum optimization algorithms, quantum algorithms that approximate the ground state of a general QUBO problem, and quantum sampling. We also discuss the quantum algorithms that are custom designed to solve certain types of QUBO problems.
PDF ARXIV PREPRINT
Most Recent Papers
Efficient and Accurate Electronic Structure Simulation Demonstrated on a Trapped-Ion Quantum Computer
By Yukio Kawashima, Marc P. Coons, Yunseong Nam, Erika Lloyd, Shunji Matsuura, Alejandro J. Garza, Sonika Johri, Lee Huntington, Valentin Senicourt, Andrii O. Maksymov, Jason H. V. Nguyen, Jungsang Kim, Nima Alidoust, Arman Zaribafiyan, & Takeshi Yamazaki Quantum...
Scaling Overhead of Locality Reduction in Binary Optimization Problems
By Elisabetta Valiante, Maritza Hernandez, Amin Barzegar, & Helmut G. Katzgraber Recently, there has been considerable interest in solving optimization problems by mapping these onto a binary representation, sparked mostly by the use of quantum annealing machines....
Quantum Multiple Kernel Learning
By Seyed Shakib Vedaie, Moslem Noori, Jaspreet S. Oberoi, Barry C. Sanders, & Ehsan Zahedinejad Kernel methods play an important role in machine learning applications due to their conceptual simplicity and superior performance on numerous machine learning tasks....
Quantum Annealing Approaches to the Phase-Unwrapping Problem in Synthetic-Aperture Radar Imaging
By Khaled A. Helal Kelany, Nikitas Dimopoulos, Clemens P. J. Adolphs, Bardia Barabadi, & Amirali Baniasadi The focus of this work is to explore the use of quantum annealing solvers for the problem of phase unwrapping of synthetic aperture radar (SAR) images....
Finding the Ground State of Spin Hamiltonians with Reinforcement Learning
By Kyle Mills, Pooya Ronagh, & Isaac Tamblyn Reinforcement learning (RL) has become a proven method for optimizing a procedure for which success has been defined, but the specific actions needed to achieve it have not. Using a method we call "controlled online...