A Quantum Annealing-Based Approach to Extreme Clustering
By Tim Jaschek, Marko Bucyk, & Jaspreet S. Oberoi
Clustering, or grouping, dataset elements based on similarity can be used not only to classify a dataset into a few categories, but also to approximate it by a relatively large number of representative elements. In the latter scenario, referred to as extreme clustering, datasets are enormous and the number of representative clusters is large. We have devised a distributed method that can efficiently solve extreme clustering problems using quantum annealing. We prove that this method yields optimal clustering assignments under a separability assumption, and show that the generated clustering assignments are of comparable quality to those of assignments generated by common clustering algorithms, yet can be obtained a full order of magnitude faster.
PDF ARXIV PREPRINT
Most Recent Papers
Efficient and Accurate Electronic Structure Simulation Demonstrated on a Trapped-Ion Quantum Computer
By Yukio Kawashima, Marc P. Coons, Yunseong Nam, Erika Lloyd, Shunji Matsuura, Alejandro J. Garza, Sonika Johri, Lee Huntington, Valentin Senicourt, Andrii O. Maksymov, Jason H. V. Nguyen, Jungsang Kim, Nima Alidoust, Arman Zaribafiyan, & Takeshi Yamazaki Quantum...
Scaling Overhead of Locality Reduction in Binary Optimization Problems
By Elisabetta Valiante, Maritza Hernandez, Amin Barzegar, & Helmut G. Katzgraber Recently, there has been considerable interest in solving optimization problems by mapping these onto a binary representation, sparked mostly by the use of quantum annealing machines....
Quantum Multiple Kernel Learning
By Seyed Shakib Vedaie, Moslem Noori, Jaspreet S. Oberoi, Barry C. Sanders, & Ehsan Zahedinejad Kernel methods play an important role in machine learning applications due to their conceptual simplicity and superior performance on numerous machine learning tasks....
Quantum Annealing Approaches to the Phase-Unwrapping Problem in Synthetic-Aperture Radar Imaging
By Khaled A. Helal Kelany, Nikitas Dimopoulos, Clemens P. J. Adolphs, Bardia Barabadi, & Amirali Baniasadi The focus of this work is to explore the use of quantum annealing solvers for the problem of phase unwrapping of synthetic aperture radar (SAR) images....
Finding the Ground State of Spin Hamiltonians with Reinforcement Learning
By Kyle Mills, Pooya Ronagh, & Isaac Tamblyn Reinforcement learning (RL) has become a proven method for optimizing a procedure for which success has been defined, but the specific actions needed to achieve it have not. Using a method we call "controlled online...