A Quantum Annealing-Based Approach to Extreme Clustering

By Tim Jaschek, Marko Bucyk, & Jaspreet S. Oberoi
Clustering, or grouping, dataset elements based on similarity can be used not only to classify a dataset into a few categories, but also to approximate it by a relatively large number of representative elements. In the latter scenario, referred to as extreme clustering, datasets are enormous and the number of representative clusters is large. We have devised a distributed method that can efficiently solve extreme clustering problems using quantum annealing. We prove that this method yields optimal clustering assignments under a separability assumption, and show that the generated clustering assignments are of comparable quality to those of assignments generated by common clustering algorithms, yet can be obtained a full order of magnitude faster.
PDF    ARXIV PREPRINT

Most Recent Papers

Scaling Overhead of Locality Reduction in Binary Optimization Problems

By Elisabetta Valiante, Maritza Hernandez, Amin Barzegar, & Helmut G. Katzgraber Recently, there has been considerable interest in solving optimization problems by mapping these onto a binary representation, sparked mostly by the use of quantum annealing machines....

Quantum Multiple Kernel Learning

By Seyed Shakib Vedaie, Moslem Noori, Jaspreet S. Oberoi, Barry C. Sanders, & Ehsan Zahedinejad Kernel methods play an important role in machine learning applications due to their conceptual simplicity and superior performance on numerous machine learning tasks....

Variationally Scheduled Quantum Simulation

By Shunji Matsuura, Samantha Buck, Valentin Senicourt, & Arman Zaribafiyan Eigenstate preparation is ubiquitous in quantum computing, and a standard approach for generating the lowest-energy states of a given system is by employing adiabatic state preparation...