Systematic and Deterministic Graph-Minor Embedding for Cartesian Products of Graphs

By Arman Zaribafiyan, Dominic Marchand, & S. Saeed C. Rezaei

The limited connectivity of current and next-generation quantum annealers motivates the need for efficient graph-minor embedding methods. These methods allow non-native problems to be adapted to the target annealer’s architecture. The overhead of the widely used heuristic techniques is quickly proving to be a significant bottleneck for solving real-world applications. To alleviate this difficulty, we propose a systematic and deterministic embedding method, exploiting the structures of both the input graph of the specific problem and the quantum annealer. We focus on the specific case of the Cartesian product of two complete graphs, a regular structure that occurs in many problems. We divide the embedding problem by first embedding one of the factors of the Cartesian product in a repeatable pattern. The resulting simplified problem consists of the placement and connecting together of these copies to reach a valid solution. Aside from the obvious advantage of a systematic and deterministic approach with respect to speed and efficiency, the embeddings produced are easily scaled for larger processors and show desirable properties for the number of qubits used and the chain length distribution. To conclude, we briefly address the problem of circumventing inoperable qubits by presenting possible extensions of the method.

Journal reference:  Quantum Information Processing, 
Presented at: American Physical Society APS March Meeting 2016, Session F45: Adiabatic Quantum Computation and Quantum Annealing: Energy Landscapes, Speedup and Embedding APS March Meeting 2016, Volume 61, Number 2 

PDF     arXiv preprint

Most Recent Papers

Scaling Overhead of Locality Reduction in Binary Optimization Problems

By Elisabetta Valiante, Maritza Hernandez, Amin Barzegar, & Helmut G. Katzgraber Recently, there has been considerable interest in solving optimization problems by mapping these onto a binary representation, sparked mostly by the use of quantum annealing machines....

Quantum Multiple Kernel Learning

By Seyed Shakib Vedaie, Moslem Noori, Jaspreet S. Oberoi, Barry C. Sanders, & Ehsan Zahedinejad Kernel methods play an important role in machine learning applications due to their conceptual simplicity and superior performance on numerous machine learning tasks....

Variationally Scheduled Quantum Simulation

By Shunji Matsuura, Samantha Buck, Valentin Senicourt, & Arman Zaribafiyan Eigenstate preparation is ubiquitous in quantum computing, and a standard approach for generating the lowest-energy states of a given system is by employing adiabatic state preparation...