Free-Energy-based Reinforcement Learning Using a Quantum Processor

By Anna Levit, Daniel Crawford, Navid Ghadermarzy, Jaspreet S. Oberoi,
Ehsan Zahedinejad, & Pooya Ronagh

Recent theoretical and experimental results suggest the possibility of using current and near-future quantum hardware in challenging sampling tasks. In this paper, we introduce free-energy-based reinforcement learning (FERL) as an application of quantum hardware. We propose a method for processing a quantum annealer’s measured qubit spin configurations in approximating the free energy of a quantum Boltzmann machine (QBM). We then apply this method to perform reinforcement learning on the grid-world problem using the D-Wave 2000Q quantum annealer. The experimental results show that our technique is a promising method for harnessing the power of quantum sampling in reinforcement learning tasks.

Presented at: Theory of Quantum Computation, Communication and Cryptography TCQ 2017

PDF     arXiv preprint

Most Recent Papers

Scaling Overhead of Locality Reduction in Binary Optimization Problems

By Elisabetta Valiante, Maritza Hernandez, Amin Barzegar, & Helmut G. Katzgraber Recently, there has been considerable interest in solving optimization problems by mapping these onto a binary representation, sparked mostly by the use of quantum annealing machines....

Quantum Multiple Kernel Learning

By Seyed Shakib Vedaie, Moslem Noori, Jaspreet S. Oberoi, Barry C. Sanders, & Ehsan Zahedinejad Kernel methods play an important role in machine learning applications due to their conceptual simplicity and superior performance on numerous machine learning tasks....

Variationally Scheduled Quantum Simulation

By Shunji Matsuura, Samantha Buck, Valentin Senicourt, & Arman Zaribafiyan Eigenstate preparation is ubiquitous in quantum computing, and a standard approach for generating the lowest-energy states of a given system is by employing adiabatic state preparation...