The Power of One Qubit in Machine Learning

By Roohollah Ghobadi, Jaspreet S. Oberoi, & Ehsan Zahedinejhad
Kernel methods are used extensively in classical machine learning, especially in the field of pattern analysis. In this paper, we propose a kernel-based quantum machine learning algorithm that can be implemented on a near-term, intermediate scale quantum device. Our proposal is based on estimating classically intractable kernel functions, using a restricted quantum model known as deterministic quantum computing with one qubit. Our method provides a framework for studying the role of quantum correlations other than quantum entanglement for machine learning applications.

Most Recent Papers

Scaling Overhead of Locality Reduction in Binary Optimization Problems

By Elisabetta Valiante, Maritza Hernandez, Amin Barzegar, & Helmut G. Katzgraber Recently, there has been considerable interest in solving optimization problems by mapping these onto a binary representation, sparked mostly by the use of quantum annealing machines....

Quantum Multiple Kernel Learning

By Seyed Shakib Vedaie, Moslem Noori, Jaspreet S. Oberoi, Barry C. Sanders, & Ehsan Zahedinejad Kernel methods play an important role in machine learning applications due to their conceptual simplicity and superior performance on numerous machine learning tasks....

Variationally Scheduled Quantum Simulation

By Shunji Matsuura, Samantha Buck, Valentin Senicourt, & Arman Zaribafiyan Eigenstate preparation is ubiquitous in quantum computing, and a standard approach for generating the lowest-energy states of a given system is by employing adiabatic state preparation...