The Power of One Qubit in Machine Learning

By Roohollah Ghobadi, Jaspreet S. Oberoi, & Ehsan Zahedinejhad
Kernel methods are used extensively in classical machine learning, especially in the field of pattern analysis. In this paper, we propose a kernel-based quantum machine learning algorithm that can be implemented on a near-term, intermediate scale quantum device. Our proposal is based on estimating classically intractable kernel functions, using a restricted quantum model known as deterministic quantum computing with one qubit. Our method provides a framework for studying the role of quantum correlations other than quantum entanglement for machine learning applications.
PDF    ARXIV PREPRINT

Most Recent Papers

Variationally Scheduled Quantum Simulation

By Shunji Matsuura, Samantha Buck, Valentin Senicourt, & Arman Zaribafiyan Eigenstate preparation is ubiquitous in quantum computing, and a standard approach for generating the lowest-energy states of a given system is by employing adiabatic state preparation...

A Quantum Annealing-Based Approach to Extreme Clustering

By Tim Jaschek, Marko Bucyk, & Jaspreet S. Oberoi Clustering, or grouping, dataset elements based on similarity can be used not only to classify a dataset into a few categories, but also to approximate it by a relatively large number of representative elements. In...