A Quantum-Inspired Method for Three-Dimensional Ligand-Based Virtual Screening

By Maritza Hernandez, Guo Liang Gan, Kirby Linvill, Carl Dukatz, Jun Feng, & Govinda Bhisetti
Measuring similarity between molecules is an important part of virtual screening (VS) experiments deployed during the early stages of drug discovery. Most widely used methods for evaluating the similarity of molecules use molecular fingerprints to encode structural information. While similarity methods using fingerprint encodings are efficient, they do not consider all the relevant aspects of molecular structure. In this paper, we describe a quantum-inspired graph-based molecular similarity (GMS) method for ligand-based VS. The GMS method is formulated as a quadratic unconstrained binary optimization problem that can be solved using a quantum annealer, providing the opportunity to take advantage of this nascent and potentially groundbreaking technology. In this study, we consider various features relevant to ligand-based VS, such as pharmacophore features and three-dimensional atomic coordinates, and include them in the GMS method. We evaluate this approach on various datasets from the DUD_LIB_VS_1.0 library. Our results show that using three-dimensional atomic coordinates as features for comparison yields higher early enrichment values. In addition, we evaluate the performance of the GMS method against conventional fingerprint approaches. The results demonstrate that the GMS method outperforms fingerprint methods for most of the datasets, presenting a new alternative in ligand-based VS with the potential for future enhancement.
PDF    ARXIV PREPRINT

Most Recent Papers

Scaling Overhead of Locality Reduction in Binary Optimization Problems

By Elisabetta Valiante, Maritza Hernandez, Amin Barzegar, & Helmut G. Katzgraber Recently, there has been considerable interest in solving optimization problems by mapping these onto a binary representation, sparked mostly by the use of quantum annealing machines....

Quantum Multiple Kernel Learning

By Seyed Shakib Vedaie, Moslem Noori, Jaspreet S. Oberoi, Barry C. Sanders, & Ehsan Zahedinejad Kernel methods play an important role in machine learning applications due to their conceptual simplicity and superior performance on numerous machine learning tasks....

Variationally Scheduled Quantum Simulation

By Shunji Matsuura, Samantha Buck, Valentin Senicourt, & Arman Zaribafiyan Eigenstate preparation is ubiquitous in quantum computing, and a standard approach for generating the lowest-energy states of a given system is by employing adiabatic state preparation...