Towards the Practical Application of Near-Term Quantum Computers in Quantum Chemistry Simulations: A Problem Decomposition Approach

By Takeshi Yamazaki, Shunji Matsuura, Ali Narimani, Anushervon Saidmuradov, & Arman Zaribafiyan
With the aim of establishing a framework to efficiently perform the practical application of quantum chemistry simulation on near-term quantum devices, we envision a hybrid quantum–classical framework for leveraging problem decomposition (PD) techniques in quantum chemistry. Specifically, we use PD techniques to decompose a target molecular system into smaller subsystems requiring fewer computational resources. In our framework, there are two levels of hybridization. At the first level, we use a classical algorithm to decompose a target molecule into subsystems, and utilize a quantum algorithm to simulate the quantum nature of the subsystems. The second level is in the quantum algorithm. We consider the quantum–classical variational algorithm that iterates between an expectation estimation using a quantum device and a parameter optimization using a classical device. We investigate three popular PD techniques for our hybrid approach: the fragment molecular-orbital (FMO) method, the divide-and-conquer (DC) technique, and the density matrix embedding theory (DMET). We examine the efficacy of these techniques in correctly differentiating conformations of simple alkane molecules. In particular, we consider the ratio between the number of qubits for PD and that of the full system; the mean absolute deviation; and the Pearson correlation coefficient and Spearman’s rank correlation coefficient. Sampling error is introduced when expectation values are measured on the quantum device. Therefore, we study how this error affects the predictive performance of PD techniques. The present study is our first step to opening up the possibility of using quantum chemistry simulations at a scale close to the size of molecules relevant to industry on near-term quantum hardware.
PDF    ARXIV PREPRINT

Most Recent Papers

Neural Error Mitigation of Near-Term Quantum Simulations

By Elizabeth R. Bennewitz, Florian Hopfmueller, Bohdan Kulchytskyy, Juan Carrasquilla, & Pooya Ronagh

One of the promising applications of early quantum computers is the simulation of quantum systems. Variational methods for near-term quantum computers, such as the variational quantum eigensolver (VQE), are a promising approach to finding ground states of quantum systems relevant in physics, chemistry, and materials science…

Benchmark Study of Quantum Algorithms for Combinatorial Optimization: Unitary versus Dissipative

By Krishanu Sankar, Artur Scherer, Satoshi Kako, Sam Reifenstein, Navid Ghadermarzy, Willem B. Krayenhoff, Yoshitaka Inui, Edwin Ng, Tatsuhiro Onodera, Pooya Ronagh, & Yoshihisa Yamamoto

We study the performance scaling of three quantum algorithms for combinatorial optimization: measurement-feedback coherent Ising machines (MFB-CIM), discrete adiabatic quantum computation (DAQC), and the Dürr-Hoyer algorithm for quantum minimum finding (DH-QMF) that is based on Grover’s search. We use MaxCut problems as our reference for comparison, and time-to-solution (TTS) as a practical measure of performance for these optimization algorithms…

Scaling Up Electronic Structure Calculations on Quantum Computers: The Frozen Natural Orbital Based Method of Increments

By Prakash Verma, Lee Huntington, Marc Coons, Yukio Kawashima, Takeshi Yamazaki, & Arman Zaribafiyan

The method of increments and frozen natural orbital (MI-FNO) framework is introduced to help expedite the application of noisy, intermediate-scale quantum (NISQ) devices for quantum chemistry simulations. The MI-FNO framework provides a systematic reduction of the occupied and virtual orbital spaces for quantum chemistry simulations. The correlation energies of the resulting increments from the MI-FNO reduction can then be solved by various algorithms, including quantum algorithms such as the phase estimation algorithm and the variational quantum eigensolver (VQE)…

Variationally Scheduled Quantum Simulation

By Shunji Matsuura, Samantha Buck, Valentin Senicourt, & Arman Zaribafiyan

Eigenstate preparation is ubiquitous in quantum computing, and a standard approach for generating the lowest-energy states of a given system is by employing adiabatic state preparation (ASP). In the present work, we investigate a variational method for determining the optimal scheduling procedure within the context of ASP. In the absence of quantum error correction, running a quantum device for any meaningful amount of time causes a system to become susceptible to the loss of relevant information…

Efficient and Accurate Electronic Structure Simulation Demonstrated on a Trapped-Ion Quantum Computer

By Yukio Kawashima, Marc P. Coons, Yunseong Nam, Erika Lloyd, Shunji Matsuura, Alejandro J. Garza, Sonika Johri, Lee Huntington, Valentin Senicourt, Andrii O. Maksymov, Jason H. V. Nguyen, Jungsang Kim, Nima Alidoust, Arman Zaribafiyan, & Takeshi Yamazaki

Quantum computers have the potential to perform accurate and efficient electronic structure calculations, enabling the simulation of properties of materials. However, today’s noisy, intermediate-scale quantum (NISQ) devices have a limited number of qubits and gate operations due to the presence of errors. Here, we propose a systematically improvable end-to-end pipeline to alleviate these limitations…