A Quantum-Inspired Method for Three-Dimensional Ligand-Based Virtual Screening
By Maritza Hernandez, Guo Liang Gan, Kirby Linvill, Carl Dukatz, Jun Feng, & Govinda Bhisetti
Measuring similarity between molecules is an important part of virtual screening (VS) experiments deployed during the early stages of drug discovery. Most widely used methods for evaluating the similarity of molecules use molecular fingerprints to encode structural information. While similarity methods using fingerprint encodings are efficient, they do not consider all the relevant aspects of molecular structure. In this paper, we describe a quantum-inspired graph-based molecular similarity (GMS) method for ligand-based VS. The GMS method is formulated as a quadratic unconstrained binary optimization problem that can be solved using a quantum annealer, providing the opportunity to take advantage of this nascent and potentially groundbreaking technology. In this study, we consider various features relevant to ligand-based VS, such as pharmacophore features and three-dimensional atomic coordinates, and include them in the GMS method. We evaluate this approach on various datasets from the DUD_LIB_VS_1.0 library. Our results show that using three-dimensional atomic coordinates as features for comparison yields higher early enrichment values. In addition, we evaluate the performance of the GMS method against conventional fingerprint approaches. The results demonstrate that the GMS method outperforms fingerprint methods for most of the datasets, presenting a new alternative in ligand-based VS with the potential for future enhancement.
PDF ARXIV PREPRINT
Most Recent Papers
Neural Error Mitigation of Near-Term Quantum Simulations
By Elizabeth R. Bennewitz, Florian Hopfmueller, Bohdan Kulchytskyy, Juan Carrasquilla, & Pooya Ronagh
One of the promising applications of early quantum computers is the simulation of quantum systems. Variational methods for near-term quantum computers, such as the variational quantum eigensolver (VQE), are a promising approach to finding ground states of quantum systems relevant in physics, chemistry, and materials science…
Benchmark Study of Quantum Algorithms for Combinatorial Optimization: Unitary versus Dissipative
By Krishanu Sankar, Artur Scherer, Satoshi Kako, Sam Reifenstein, Navid Ghadermarzy, Willem B. Krayenhoff, Yoshitaka Inui, Edwin Ng, Tatsuhiro Onodera, Pooya Ronagh, & Yoshihisa Yamamoto
We study the performance scaling of three quantum algorithms for combinatorial optimization: measurement-feedback coherent Ising machines (MFB-CIM), discrete adiabatic quantum computation (DAQC), and the Dürr-Hoyer algorithm for quantum minimum finding (DH-QMF) that is based on Grover’s search. We use MaxCut problems as our reference for comparison, and time-to-solution (TTS) as a practical measure of performance for these optimization algorithms…
Scaling Up Electronic Structure Calculations on Quantum Computers: The Frozen Natural Orbital Based Method of Increments
By Prakash Verma, Lee Huntington, Marc Coons, Yukio Kawashima, Takeshi Yamazaki, & Arman Zaribafiyan
The method of increments and frozen natural orbital (MI-FNO) framework is introduced to help expedite the application of noisy, intermediate-scale quantum (NISQ) devices for quantum chemistry simulations. The MI-FNO framework provides a systematic reduction of the occupied and virtual orbital spaces for quantum chemistry simulations. The correlation energies of the resulting increments from the MI-FNO reduction can then be solved by various algorithms, including quantum algorithms such as the phase estimation algorithm and the variational quantum eigensolver (VQE)…
Variationally Scheduled Quantum Simulation
By Shunji Matsuura, Samantha Buck, Valentin Senicourt, & Arman Zaribafiyan
Eigenstate preparation is ubiquitous in quantum computing, and a standard approach for generating the lowest-energy states of a given system is by employing adiabatic state preparation (ASP). In the present work, we investigate a variational method for determining the optimal scheduling procedure within the context of ASP. In the absence of quantum error correction, running a quantum device for any meaningful amount of time causes a system to become susceptible to the loss of relevant information…
Efficient and Accurate Electronic Structure Simulation Demonstrated on a Trapped-Ion Quantum Computer
By Yukio Kawashima, Marc P. Coons, Yunseong Nam, Erika Lloyd, Shunji Matsuura, Alejandro J. Garza, Sonika Johri, Lee Huntington, Valentin Senicourt, Andrii O. Maksymov, Jason H. V. Nguyen, Jungsang Kim, Nima Alidoust, Arman Zaribafiyan, & Takeshi Yamazaki
Quantum computers have the potential to perform accurate and efficient electronic structure calculations, enabling the simulation of properties of materials. However, today’s noisy, intermediate-scale quantum (NISQ) devices have a limited number of qubits and gate operations due to the presence of errors. Here, we propose a systematically improvable end-to-end pipeline to alleviate these limitations…